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1 IntroductionOver the years, single unit recording studies have consistently suggested that information pertainingto a cued stimulus can be stored temporarily as the tonic activity of a population of neurons (Fusterand Alexander, 1971; Gottlieb, Vaadia, and Abeles, 1989). These �ring patterns are similar acrossmodality speci�c cortical regions, suggesting a general underlying memory mechanism.Zipser (1991) showed that the activity of hidden units in a fully-recurrent neural network,trained on a very simple memory task, matched the qualitative temporal activity patterns of thesememory-associated neurons. He also described a seemingly paradoxical property of this model:simulated random 
uctuations in neural �ring rate (noise) can slow the rate of information loss.In the present work, we show that dynamics of a single sigmoid unit mimics the collectiveresponse of Zipser's multi-unit model. A mathematical analysis of the one unit model is tractableand provides an explanation for why noise (on average) can improve retention. We believe thatthis explanation extends to Zipser's multi-unit model.2 Zipser ModelZipser's short-term active memory model consists of two linear input units and a number of fully-connected sigmoid units representing short-term memory. The input units, which have connectionsto all memory nodes, are a binary cue xc and a real-valued stimulus xs. The unit equation for allmemory nodes is yi(t + 1) = �(Xj wijyj(t) + wisxs + wicxc + �i +Xi(t)) (1)where the sigmoid function is �(x) = (1 + e�x)�1: (2)The activation of each memory unit i is a weighted sum of the inputs, the activations of all of thememory units, and a bias term �i, squashed by the sigmoid shaped function �(x). The cue andstimulus inputs and weights are subscripted with c and s, respectively. A Gaussian noise termXi(t) (with zero mean and standard deviation �) is added during testing trials only, to simulaterandom neural excitation.The training task, shown in Panel A of Figure 1, is to store a cued intensity value in memoryfor an unspeci�ed duration. During a training sequence, the cue is initialized to 1:0 and a stimulusis selected from the interval [0; 1]. The \output" unit of the network is trained using the real-timerecurrent learning algorithm of Williams and Zipser (1989) to autoassociate the cued stimulus valuefor a random number of time steps. The biases �i remain �xed at negative values typically in therange [�1:0;�3:5]. Between cued stimuli, the cue unit is set to 0.0 and the stimulus unit variesrandomly.The typical response of the network after training is to produce a brief peak to each event ofstimulus-plus-cue, to remain at the approximate simulus value, and then to decay slowly (see PanelB of Figure 1). As the interstimulus interval becomes su�ciently large, the activations approach astable equilibrium, indicating that the network has \forgotten" the stimulus value. The basis formemory in this model is the slow relaxation to an attractor following presentation of the stimulus.This is contrasted with Hop�eld memory models (Hop�eld, 1982) which use attractors to storememory items; i.e., input pattern processing converges to a stable activation pattern that is mostclosely associated with the input.McAuley, Anderson, and Port (1992) have investigated the behavior of the Zipser model bytesting its response on a same-di�erent (roving-level) intensity discrimination task (Durlach and2
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(y(t)+�) (3)where 
 is a gain term and � is a bias term. By initializing y(0) as the \to-be-remembered"stimulus, this equation is a primitive model of short-term memory which we can compare directlyto the performance of the Zipser model. Finding equilibria for this system for di�erent valuesof gain and bias requires numerical techniques such as Newton's method for approximating roots(Atkinson, 1978). However, parameter values for gain and bias which form a boundary betweenone and two attractor systems can be found explicitly by observing that systems on this boundaryhave a saddle equilibrium x that is tangent to the diagonal line y(t + 1) = y(t). At such tangentequilibrium points, �0(x) = 1. This information, combined with the equilibrium equation, can beused to de�ne an expression for the bias as a function of the gain:� = �1 �p1� 4=
2 � ln 21�p1�4=
 � 1
 : (4)This curve in gain-bias space is shown in Figure 2. Points outside the curve con�gure one attractormodels and points inside the curve con�gure two attractor models. The two attractor systems alsohave an unstable equilibrium which acts as a threshold. Stimuli y(0) above this threshold convergeto an upper attractor while stimuli below this threshold converge to a lower attractor. As the gainincreases, the upper and lower attractors approach 1:0 and 0:0 respectively.4 Comparing Both ModelsFigure 3 compares the response of memory, with and without noise, for the Zipser model at timestep 10 (top panel) and the single unit model at time step 7 (bottom panel). Stimulus value is3
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Figure 2: Bifurcations in the dynamics of the single unit sigmoid model as a function of the gainand bias parameters.plotted along the abscissa and the corresponding memory trace (activation of the output unit attime step n) is plotted along the ordinate. Perfect memory is depicted by the diagonal line (stimulus= trace). Both systems have two attractors. In the single unit case, 
 = 6:0 and � = �0:5. Belowa threshold, memory traces relax towards an attractor located near 0:0. Above this threshold,memory traces relax towards an attractor near 1:0.To examine the e�ect of noise, we added a Gaussian random variable Xi(t) with a mean of 0:0and a standard deviation of 0:05 to the output of each unit i on each time step. Memory responsewas sampled 20 times for each stimulus value after 10 time steps (7 for the single unit model) andthen averaged across trials. Each hatch mark indicates the average e�ect of noise on memory fora �xed stimulus value after a �xed number of time steps. With noise, both models maintain abetter approximation of a range of stimulus values, than without noise. That is, noisy data pointsin regions of the stimulus space are closer to lying along the diagonal (perfect memory) than thecurves showing memory performance without noise. Moreover, the performance of the single unitmodel is essentially the same as the Zipser's multi-unit model. Although, the memory traces decayfaster in the single unit case. In the next section, we analyze the single unit system to explain thee�ect of noise.5 AnalysisThe average e�ect of noise is described here as��(x) = 1n nXi=1 �(x+Xi(t)) (5)where n is the number of trials that are averaged over and Xi(t) is the noise value on trial i. Forthis analysis, we assume that Xi(t) is a Bernoulli probability function on the discrete set f��; �g;that is, Xi(t) is either � or �� with probability 0:5. There are two cases to consider:��(x) = �(x+ �) (6)and ���(x) = �(x� �): (7)4
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Case � 
 Rate of Information Loss1 + + faster2 + � slower3 � + slower4 � � faster5 0 + same6 0 � sameTable 1: The nonlinear e�ect of noise on iterations of the single unit sigmoid model.where x is the stimulus and �(x) is its memory trace after one iteration. The sign of � indicateswhether successive iterations of �(x) are moving towards an attractor that is above or below theinitial stimulus x. Positive � implies that iterations of �(x) are converging towards an attractorthat has a value larger than the stimulus. Negative � implies the opposite. The sign of 
 indicatesthe direction noise (on average) pushes iterations of �(x) Positive 
 increases �(x). Negative 
decreases �(x).For each case, we show the average e�ect of noise on the rate of information loss (memoryretention). If � and 
 have the same sign then noise degrades the memory trace of stimulus xbecause it relaxes the system towards an attractor at a faster rate than without noise (cases 1and 4). If � and 
 have opposite signs then noise sustains the memory trace by slowing downthe relaxation rate (cases 2 and 3). When x = ��, it can be shown that 
 = 0 (cases 5 and6); this is the point at which 
 switches sign. The � term changes sign at stable and unstableequilibria. Above and below attractors, � is negative and positive respectively. The opposite istrue for unstable equilibria.A point in gain-bias space �xes the number and location of equilibria and hence determines thestimulus ranges for which noise (on average) will improve retention. The six di�erent con�gurationsare enumerated in panel A of Figure 4. For one attractor models (cases 1,2 and 3), noise improvesretention of stimuli that are between this attractor and x = ��. For two attractor models (cases4, 5, and 6), noise improves retention for stimuli between these attractors, except for the stimulusregion bounded by the unstable equilibria and x = ��.In panel B, we have �xed the gain and bias of the single unit model at 6 and �0:5 respectively.This model is an instance of case 6, but serves to summarize cases 4 and 5 as well. If we choose to\load" a stimulus value of 0:6 into the memory of this model, then noise should improve retentionof this stimulus because the value is between the two attractors. Panel B compares 10 iterations ofthe functions �(x) and ��(x) for stimulus (initial x) = 0:6 and � = 0:15. As expected, the modelwith noise (dotted line) converges to the upper attractor at a slower rate than the model withoutnoise (solid line).In panel C, we illustrate the opposite e�ect. The gain and the bias are �xed at 3:8 and �0:5respectively. This model is an instance of case 1, but also illustrates the properties of cases 2 and3. In contrast to panel B, noise added to this model after loading a stimulus value of 0:6 shouldspeed up the trace decay. Moreover, as an instance of case 1 models, noise hurts the retention ofvalues in the entire stimulus range. Panel C compares 10 iterations of �(x) and ��(x) for stimulus= 0:8 and � = 0:15. As expected, the model with noise (dotted line) converges to the attractor ata faster rate than the model without noise (solid line).6
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Figure 4: (A) Enumeration of the stimulus intervals for which noise slows the rate of informationloss, as a function of memory dynamics: A indicates an attractor, U indicates an unstable equi-librium, and B indicates the point x = ��. Noise improves retention for stimuli within the darkshaded regions. The model in (B) is an instance of case 6. It compares memory performance withand without noise for a stimulus of 0:6. The model in (C) is an instance of case 1. It comparesmemory performance with and without noise for a stimulus of 0:8.7



6 ConclusionsWe have shown that a single sigmoid unit approximates the collective \output" behavior of a many-unit fully-recurrent network for short-term active memory (Zipser, 1991). The stimulus regions forwhich noise slows the rate of information loss has been shown to vary predictably as a functionof the gain and bias parameters. Thus, the surprising e�ect of noise has a rather straightforwardexplanation in the nonlinear dynamics of the sigmoid function. For one attractor models (low gain),the stimulus region for which noise improves retention is small or nonexistent (as in case 1). Fortwo attractor models (high gain), the stimulus region for which noise improves retention is muchlarger (between the two attractors) and continues to increase in size with further increases in gain.However, the memory of large-gain models is inherently poor. This suggests that an \optimal"balance of having good inherent retention and sizable stimulus regions which are helped by noisemay lie near bifurcation boundaries between one attractor and two attractor models. We have yetto quantify a measure of \how much" noise improves retention. In general, this research suggestsone way that the nervous system may take advantage of noise inherent in the system, rather thanbe hindered by it as generally assumed, to better represent and process information.ReferencesAtkinson, K. (1978). An Introduction to Numerical Analysis. Wiley and Sons, New York.Durlach, N. and Braida, L. (1969). Intensity perception. I. preliminary theory of intensity resolution.Journal of the Acoustical Society of America, 46(2):372{383.Fuster, J. and Alexander, G. (1971). Neuron activity related to short-term memory. Science,173:652{654.Gottlieb, Y., Vaadia, E., and Abeles, M. (1989). Single unit activity in the auditory cortex of amonkey performing a short term memory task. Experimental Brain Research, 74:139{148.Hop�eld, J. J. (1982). Neural networks and physical systems with emergent collective computationalabilities. In Proceedings of the National Academy of Sciences, volume 79, pages 2554{2558.National Academy of Sciences.McAuley, J. D., Anderson, S., and Port, R. (1992). Sensory discrimination in a short-term tracememory. In Proceedings of the Fourteenth Annual Meeting of the Cognitive Science Society,pages 136{140, Hillsdale, NJ. L. Erlbaum Assoc.Williams, R. and Zipser, D. (1989). A learning algorithm for continually running fully recurrentneural networks. Neural Computation, 1(2):270{280.Zipser, D. (1991). Recurrent network model of the neural mechanism of short-term active memory.Neural Computation, 3:179{193.
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