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Herrmann B, Henry MJ, Fromboluti EK, McAuley JD,
Obleser J. Statistical context shapes stimulus-specific adaptation in
human auditory cortex. J Neurophysiol 113: 2582–2591, 2015. First
published February 4, 2015; doi:10.1152/jn.00634.2014.—Stimulus-
specific adaptation is the phenomenon whereby neural response mag-
nitude decreases with repeated stimulation. Inconsistencies between
recent nonhuman animal recordings and computational modeling
suggest dynamic influences on stimulus-specific adaptation. The pres-
ent human electroencephalography (EEG) study investigates the po-
tential role of statistical context in dynamically modulating stimulus-
specific adaptation by examining the auditory cortex-generated N1
and P2 components. As in previous studies of stimulus-specific
adaptation, listeners were presented with oddball sequences in which
the presentation of a repeated tone was infrequently interrupted by
rare spectral changes taking on three different magnitudes. Critically,
the statistical context varied with respect to the probability of small
versus large spectral changes within oddball sequences (half of the
time a small change was most probable; in the other half a large
change was most probable). We observed larger N1 and P2 ampli-
tudes (i.e., release from adaptation) for all spectral changes in the
small-change compared with the large-change statistical context. The
increase in response magnitude also held for responses to tones
presented with high probability, indicating that statistical adaptation
can overrule stimulus probability per se in its influence on neural
responses. Computational modeling showed that the degree of coadap-
tation in auditory cortex changed depending on the statistical context,
which in turn affected stimulus-specific adaptation. Thus the present data
demonstrate that stimulus-specific adaptation in human auditory cortex
critically depends on statistical context. Finally, the present results chal-
lenge the implicit assumption of stationarity of neural response magni-
tudes that governs the practice of isolating established deviant-detection
responses such as the mismatch negativity.

stimulus-specific adaptation; stimulus statistics; event-related poten-
tials; auditory processing

ANY BIOLOGICAL SYSTEM must flexibly adapt to the requirements
imposed by the environment. With respect to the neural sys-
tem, two types of adaptation that possibly reflect extremes on
a continuum can be considered: stimulus-specific adaptation
and adaptation to stimulus statistics. Stimulus-specific adapta-
tion refers to a reduction in neural responsiveness caused by
repeated stimulation (Jääskeläinen et al. 2007; Nelken and
Ulanovsky 2007; Ringo 1996). In animals, auditory stimulus-
specific adaptation is often investigated with an oddball para-
digm in which a sequence of repeated tones (of the same
frequency) is occasionally interrupted by a rare tone with a
different frequency. Generally, neural responses to repeated
tones are reduced compared with responses to rare tones

(Anderson et al. 2009; Ayala and Malmierca 2013; Bäuerle et
al. 2011; Ulanovsky et al. 2003; von der Behrens et al. 2009).

Adaptation to stimulus statistics refers to adjustments of
neural response curves evoked by the statistical properties of
the stimulation (Wark et al. 2007). For example, neuronal
responses adjust to the mean, variance, and complex shape of
the stimulation distribution (Benucci et al. 2013; Dahmen et al.
2010; Dean et al. 2005, 2008; Kvale and Schreiner 2004) and
effectively scale in dynamic range to match the range of the
stimulation input (Brenner et al. 2000; Rabinowitz et al. 2011;
Wen et al. 2009). Hence, stimulus-statistical adaptation allows
efficient coding of a wide range of stimuli with limited neu-
ronal sensitivity (Fairhall et al. 2001; Wark et al. 2007).

Here we investigated the degree to which stimulus-specific
adaptation is specific to the probability of particular stimuli in
oddball sequences. While early reports on stimulus-specific adap-
tation proposed that adaptation is limited to the repeated stimulus
(Ringo 1996), recent work shows that repeated stimuli also affect
neural populations most responsive to rare stimuli due to coadap-
tation (for a review see Escera and Malmierca 2014). The obser-
vation that adaptation induced by repeated stimuli influences
populations responding to rare stimuli is in line with human
electroencephalography (EEG) recordings using an oddball para-
digm that emphasize coadaptation (although referred to as refrac-
toriness in those studies) across frequency-specific neural popu-
lations in auditory cortex (Jacobsen and Schröger 2001; Ruhnau et
al. 2012; Schröger 2007). Importantly, inconsistencies between
stimulus-specific adaptation data and computational modeling
(Hershenhoren et al. 2014; Taaseh et al. 2011) as well as changes
in auditory cortex coadaptation with the stimulation’s spectral
range (Herrmann et al. 2013a, 2014) suggest dynamic variations
in stimulus-specific adaptation.

In the seminal work of Ulanovsky and colleagues (2003)
investigation of stimulus-specific adaptation was partially mo-
tivated by previous research on statistical adaptation of neural
responses, and subsequent work suggested an important role of
local as well as global stimulus probabilities on neural response
adaptation (RA) (Ulanovsky et al. 2004). Support for an
interrelation of stimulus-specific adaptation and statistical con-
text comes from studies investigating the underlying neural
mechanisms of adaptation. That is, neural inhibition has been
discussed as a key mechanism of statistical adaptation (Hil-
debrandt et al. 2011; Isaacson and Scanziani 2011; Olsen and
Wilson 2008; Wilson et al. 2012) and has also been shown to
modulate stimulus-specific adaptation (Duque et al. 2014;
Pérez-González et al. 2012).

The present human EEG study is concerned with the extent
to which adaptation is stimulus specific, and thus examines the
relationship between stimulus-specific adaptation and stimu-
lus-statistical adaptation. We hypothesize that the statistical
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context in which repeated and rare stimuli are presented will
influence the degree of stimulus-specific adaptation. We con-
centrated on the N1 and P2 components of the human event-
related potential (ERP) for which RA to repeated stimulation
and response adjustments to statistical properties have been
studied previously (Briley and Krumbholz 2013; Butler 1968;
Herrmann et al. 2013b, 2014; Lanting et al. 2013; Näätänen et
al. 1988; Picton et al. 1978; Yvert et al. 1998). Two types of
oddball sequences were presented (comparable to Kim and
McAuley 2013), each comprising three types of rare spectral
changes occurring with different probabilities (half of the time
a small change was most probable; in the other half a large
change was most probable). The data show that stimulus-specific
adaptation decreases in a statistical context in which small spectral
changes are most probable. Computational modeling of frequen-
cy-specific neural adaptation links these effects of statistical con-
text to coadaptation changes in auditory cortex.

MATERIALS AND METHODS

Participants. Twenty German-speaking adults participated in the
present EEG study (mean age: 24.7 yr, SD: 2.9 yr; 10 women, 10
men). Participants did not report any neurological diseases or any
hearing problems. They gave written informed consent prior to the
experiment and were paid €7 per hour for their participation. The
study was in accordance with the Declaration of Helsinki and ap-
proved by the local ethics committee of the University of Leipzig.

Acoustic stimulation and procedure. Acoustic stimuli consisted of
sequences of sine tones presented via headphones (HD 25-SP II;
Sennheiser) at a comfortable listening level. Tone sequences com-
prised a series of repeated tones (83.33%) that were irregularly
interrupted by rare tones (16.67%). The frequency of the repeated tone
was 1,000 Hz, whereas rare tones had a frequency of 1,245 Hz, 1,551
Hz, or 1,932 Hz (small, moderate, large spectral change, respectively;
log2 spacing; Fig. 1). Tone duration was 0.18 s (including 0.01 s rise

and fall times), and tones were presented isochronously with an
onset-to-onset interval of 0.5 s. Tone presentation was randomized
such that at least two repeated tones were presented between two rare
tones, with a maximum of eight repeated tone presentations between
rare tones. The number of repeated tones preceding a rare tone was
counterbalanced across the different types of rare tones.

The critical manipulation was the probability of occurrence of a
particular rare tone within a block (Fig. 1). In one block type
(small-change statistical context; Fig. 1), the rare tone constituting a
small spectral change was presented with 75% probability (relative to
all rare tones) while moderate and large spectral changes each oc-
curred with 12.5% probability. In a second block type (large-change
statistical context; Fig. 1), the rare tone constituting a large spectral
change was presented with 75% probability (relative to all rare tones)
while small and moderate spectral changes each occurred with 12.5%
probability. Within a block, at least two high-probability spectral
changes were presented between low-probability spectral changes.

Each block started with a 10-s period of silence to ensure that
neural populations were fully responsive at the beginning of the
acoustic stimulation. Then, each block type (small-change statistical
context, large-change statistical context) was presented three times in
alternating order; starting block type was counterbalanced across
participants. Within each block repeated tones were presented 1,200
times, and rare tones were presented 240 times. High-probability rare
tones were presented 180 times, and low-probability rare tones were
presented 30 times. Ten additional 1,000-Hz tones were presented at
the beginning of each block to allow for a clear representation of the
repeated tone stream, and five were presented at the end to avoid the
possibility of a rare tone at the very end of a block.

At the end of the experiment, an additional “no-adaptation” block
was presented in which the 1,000-Hz tone occurred every 10 s (30
trials; block duration of 5 min). Responses to these tones were used to
estimate neural response magnitude when neural populations are in a
nonadapted state (Herrmann et al. 2014; Sams et al. 1993).

EEG recording. Participants sat in a comfortable chair in a sound-
attenuated and electrically shielded booth while electroencephalo-
grams were recorded. They watched a silent movie (no subtitles) of
their choice and were instructed to ignore the acoustic stimulation. EEG
signals were recorded from 26 Ag/AgCl scalp electrodes (Easycap) and
additionally from left and right mastoids, nose (online reference), and
ground (at the sternum). The sampling rate was 500 Hz (TMS Interna-
tional amplifier; 135-Hz low-pass filter; impedances �5 k�).

EEG preprocessing. Off-line data analysis was carried out with
MATLAB software (v7.11; MathWorks). Raw data were filtered with
an 80-Hz low-pass finite impulse response (FIR) filter (42 points,
Hamming window) and a 0.5-Hz high-pass FIR filter (1,747 points,
Hamming window). The high-pass filter was specifically designed for
strong DC suppression (�100 dB) to replace baseline correction.
High-pass filtering instead of baseline correction is particularly well
suited for fast presentation designs as employed in the present study
(Herrmann et al. 2011; Maess et al. 2007; Ruhnau et al. 2011;
Tervaniemi et al. 1999; for a general discussion about the pitfalls of
baseline correction see Urbach and Kutas 2006). Data were then
downsampled to 250 Hz and divided into epochs ranging from �1.6
to 1.9 s time-locked to tone onsets. Subsequently, independent com-
ponents analysis (ICA; runica method, Makeig et al. 1996; logistic
infomax algorithm, Bell and Sejnowski 1995) was computed with
FieldTrip software (v20130727; Oostenveld et al. 2011). Components
containing artifacts such as blinks, heart- or muscle-related activity, or
noisy channels were rejected, and the data were then projected back to
the original electrodes. ICA reduces artifacts in EEG recordings and
is thus advantageous for the overall data quality and the number of
data points (trials) that can be submitted to further analyses. Note also
that a spatial ICA as performed here does not affect the phase of EEG
signals (Henry et al. 2014). After ICA, epochs still containing a signal
range � 120 �V in any of the electrodes were excluded (�3% of
trials were rejected). Finally, similar to previous studies investigating

Fig. 1. Experimental design: two different statistical contexts in an oddball
paradigm that vary the relative probability of rare spectral changes. In one
context, a small spectral change occurred with the highest relative probability
(small-change statistical context). In the other context, a large spectral change
occurred with the highest relative probability (large-change statistical context).
The statistical contexts were hypothesized to differently affect the degree of
coadaptation in auditory cortex.
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neural responses elicited in oddball paradigms, epochs were filtered
with a 20-Hz low-pass FIR filter (129 points, Blackman window;
Jacobsen and Schröger 2001; Maess et al. 2007; Pulvermüller et al.
2003) and cut to range from �0.1 to 0.4 s for data analysis.

Event-related potentials. For each of the six rare spectral changes
(3 per statistical context), single-trial time courses were averaged. To
investigate stimulus-specific (i.e., here frequency specific) changes in
neural response magnitude, amplitudes in the N1 time window rang-
ing from 0.09 to 0.13 s and for a fronto-central electrode cluster (Fz,
F3, F4, Fc3, FC4, Cz, C3, C4) were averaged for each tone condition
independently. Selection of time points and electrodes is in line with
previous studies investigating N1 amplitudes (Hari et al. 1982; Herr-
mann et al. 2014; Jacobsen and Schröger 2001; Ruhnau et al. 2011).
Furthermore, amplitude changes in the P2 time window have also
been suggested to be frequency specific (Herrmann et al. 2013a;
Lanting et al. 2013; Picton et al. 1978), and amplitudes were thus
averaged in the 0.17–0.26 s time window and across the same
fronto-central electrode cluster.

For the statistical analysis, separate two-way repeated-measures
ANOVAs (rmANOVAs) with the factors Spectral Change (small,
moderate, large) and Statistical Context (small change, large change)
were performed with SPSS software independently for the N1 and P2
time windows. Whenever the assumption of sphericity was violated
(according to a significant Mauchly test), Greenhouse-Geisser correc-
tion was applied (Greenhouse and Geisser 1959). Shapiro-Wilk tests
calculated for each dependent measure (N1 amplitude, P2 amplitude)
indicated normality of the data (i.e., for all P � 0.05), except for the
small spectral change in the large-change context in the P2 time
window (P � 0.040). We still carried out parametric statistics, which
allowed us to test for the interaction between Spectral Change and
Statistical Context, but additionally report the results of nonparametric
Wilcoxon signed-rank tests where appropriate.

Modeling neural coadaptation in auditory cortex. To capture the
effects of coadaptation with a biologically plausible approach, we
used a model of frequency-specific neural RA that incorporates

coadaptation across the tonotopic (frequency) gradient of auditory
cortex and recovery from adaptation after stimulus presentation (Herr-
mann et al. 2013a, 2014; for comparable models see Mill et al. 2011;
Price and Prescott 2012; Taaseh et al. 2011). We use the term
“adaptation” to refer to the inverse of neural responsiveness (Fig. 2).

The model combines an exponential decay function with a Gauss-
ian function. The decay function models the time over which neural
populations recover from adaptation (Fig. 2A; Lü et al. 1992; Mäkelä
et al. 1993; McEvoy et al. 1997; Sams et al. 1993). The Gaussian
function models frequency-specific coadaptation across tonotopically
organized regions of auditory cortex (Fig. 2B; Herrmann et al. 2013a,
2014). This is in line with previous studies using Gaussian functions
to model tuning properties of auditory cortex neurons (e.g., Dahmen
et al. 2008; Montgomery and Wehr 2010; Taaseh et al. 2011).
Furthermore, N1 RA is symmetrical for logarithmically spaced low
and high stimulation frequencies (Herrmann et al. 2013a, 2013b) and
is thus appropriately represented by a Gaussian function.

RA was estimated from the model as follows. For each participant
and for each block of presentation, an index of expected RA (ranging
from 0 to 1, where 1 reflects full adaptation) was calculated for the
onset of each presented tone based on the individual acoustic stimu-
lation protocol, independent of EEG data:

RA:,j�1 � RA:,j � a � �1 � RA:,j� � e
��t

� (1)

RA corresponds to an m � n matrix containing expected RA indices
for neural populations along the tonotopic gradient of auditory cortex
(m � 4; i.e., the 4 tone frequencies used) at each trial’s onset (n � 1,455,
number of trials in a block of presentation). The variable j is the trial
index (j � 1 . . . n), 	t is the time over which neural populations recover
before the subsequent tone onset (here set to the interstimulus interval of
0.32 s; that is, recovery starts at tone offset), and � reflects the decay of
adaptation in seconds. The operator X refers to an entrywise multiplica-
tion (Hadamard product). The column vector a reflects a Gaussian
function centered on the presented tone frequency fi of trial j:

Fig. 2. Example of the response adaptation (RA) model. A: exponential decay function describing recovery from adaptation over time (where � reflects the
steepness of the function); dot-dashed line marks the present interstimulus interval of 0.32 s. B: Gaussian function describing coadaptation in frequency-specific
regions of auditory cortex (where 	 reflects the degree of frequency specificity); responsiveness of neural populations is defined as the inverse of adaptation.
Vertical lines with arrows indicate the expected adaptation (solid) or responsiveness (dashed) for the 4 tone frequencies (repeated, small, moderate, large). C:
example of RA indices over time for an oddball sequence (� � 1.8 s; 	 � 0.45 SD). Top: a tone of 0.18-s duration is presented every 0.5 s (white bars; x-axis).
Frequency-specific coadaptation occurs along the y-axis. RA indices (color coded; dark blue corresponds to full adaptation) increase at tone onset and decrease
after tone offset (recovery). Bottom: time course of RA indices for the large spectral change (1,932 Hz; white dashed line, top). Note that lower RA indices
correspond to larger expected response amplitudes (i.e., higher responsiveness of the neural population).
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a � e�0.5�� f � fi

	 �2

(2)

where f is a column vector containing the four unique tone frequencies
(log2 units) and 	 describes the width of the Gaussian function, that
is, the degree of coadaptation along the tonotopic gradient. The index
i refers to the tone frequency presented on trial j; that is, it indexes the
row entry in f (and RA) on trial j. Finally, the RA matrix was reduced
to a vector comprising only the expected RA indices for tone frequen-
cies actually presented during the experiment (also excluding trials
rejected as artifacts).

To summarize, the relevant parameters of the RA model are �,
reflecting the decay time in seconds over which neural populations
recover from adaptation, and 	, reflecting the degree of frequency-
specific coadaptation in auditory cortex. The other variables were
predefined by the experimental setup. RA indices were calculated for
each parameter combination ranging from � � 0.5 to 4.5 s (in steps of
0.1 s) and from 	 � 0.1 to 2.5 SD (in steps of 0.05 SD). A large �
corresponds to slow recovery time from adaptation. A large 	 corre-
sponds to wide frequency-specific coadaptation.

Predicting single-trial amplitudes by response adaptation. To in-
vestigate the effects of the statistical context on frequency-specific
coadaptation in auditory cortex, a linear function was fitted to single-
trial amplitudes (separately for N1 and P2) as a function of RA
indices. Linear fits were calculated for each � � 	 combination
separately for each block, electrode, and time point. The first five trials
of each block were excluded prior to fitting to estimate adaptation-
related amplitude changes within a block unbiased by the extreme
values of the first few trials. For each � � 	 combination separately,
the resulting slopes and intercepts were averaged across blocks of the
same statistical context, across samples within the N1 or P2 time
window, and across electrodes within the fronto-central cluster. The
slope reflects the degree of amplitude change as a function of RA, and
the intercept reflects the predicted amplitude at no adaptation (RA �
0). The 	 best fitting the data (for each � separately) was selected
where the difference between the predicted (intercept) and observed
(from the no-adaptation block) amplitudes at no adaptation was
minimum (for details see Herrmann et al. 2014). Given our constant
onset-to-onset interval of 0.5 s, we did not expect changes in recovery
time from adaptation. Thus statistical analyses were conducted for a
fixed � of 1.8 s, which has been estimated previously to describe
recovery from adaptation for the N1 component (Sams et al. 1993; for
comparable estimates see Lü et al. 1992; Mäkelä et al. 1993; McEvoy
et al. 1997). Shapiro-Wilk tests calculated for each dependent measure
(slope of linear fit, root mean square error of approximation, estimated
	) indicated normality of the data (i.e., for all P � 0.05), and
parametric statistics were thus carried out.

RESULTS

In the present study, two different types of oddball se-
quences were presented to human participants (small-change
statistical context, large-change statistical context). In each
oddball sequence, the presentation of a repeated tone was
randomly interrupted by a rare tone taking on one of three
spectral changes of different magnitude (small, moderate,
large). Critically, the spectral changes differed in relative
probability of occurrence, such that either a small or a large
change was relatively more likely, establishing either small- or
large-change contexts. In the small-change context, the rare
tone constituting a small spectral change was presented with
75% probability (relative to all rare tones) while moderate and
large spectral changes each occurred with 12.5% probability.
In the large-change context, the rare tone constituting a large
spectral change was presented with 75% probability (relative to
all rare tones) while small and moderate spectral changes each
occurred with 12.5% probability (Fig. 1).

Statistical context influences response magnitude (ERP).
Figure 3 shows the time courses of the neural responses
(ERPs). For the N1 time window (0.09–0.13 s), the
rmANOVA showed a main effect of Spectral Change (F2,38 �
103.52, P � 0.001). N1 amplitudes increased (i.e., were more
negative) with increasing spectral difference between the re-
peated and rare tone frequencies (linear trend: F1,19 � 146.69,
P � 0.001). Furthermore, a main effect of Statistical Context
was observed (F1,19 � 21.46, P � 0.001). That is, N1 neural
responses were larger for the small-change statistical context
compared with the large-change statistical context (Fig. 3C).
The Spectral Change � Statistical Context interaction was not
significant (F2,38 � 1.56, P � 0.223). To be completely
transparent (although already shown by the main effect of
Statistical Context in the absence of an interaction), we con-
firmed that all direct comparisons of rare-stimulus responses
between statistical contexts showed a significant difference
(small: t19 � 3.10, P � 0.006; moderate: t19 � 2.16, P �
0.044; large: t19 � 3.82, P � 0.001). Most critically, the effect
of Statistical Context together with the absence of the Spectral
Change � Statistical Context interaction suggests statistical
adaptation. That is, in the small-change statistical context,
neural responses to all spectral changes were larger compared
with the large-change context, indicating that statistical adap-

Fig. 3. Time courses and magnitudes of neural responses. A: small-change and large-change statistical contexts. B: time courses for each of the 6 spectral changes
(in 2 statistical contexts). Topographical distributions are shown for the N1 (0.09–0.13 s) and P2 (0.17–0.26 s) time windows. ERP, event-related potential. C:
mean amplitudes for the N1 and P2 time windows. D: time courses and mean amplitudes in response to the repeated tones directly preceding rare tones. Error
bars reflect SE.
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tation is a stronger influence on neural responses than the
probability of stimulus occurrence. Under the assumption that
adaptation would be driven solely by the probability of stim-
ulus occurrence, 1) high-probability rare spectral changes
should have elicited reduced responses compared with their
less probable counterparts and 2) moderate spectral changes
(physically and probabilistically identical stimuli in the 2
statistical contexts) should have elicited identical response
magnitudes. Both expectations would have resulted in an
interaction that we did not observe. In turn, the present N1
effects suggest a change in overall neural sensitivity. The
topographical distributions of N1 responses suggest auditory
cortex generators (Fig. 3B; Näätänen and Picton 1987).

For the P2 time window (0.17–0.26 s), the rmANOVA
showed a main effect of Spectral Change (F2,38 � 46.59, P �
0.001) and a main effect of Statistical Context (F1,19 � 14.40,
P � 0.001). Furthermore, the Spectral Change � Statistical
Context interaction was significant (F2,38 � 5.31, P � 0.009).
The interaction was resolved by comparing the P2 amplitudes
between the two statistical contexts for each spectral change
condition independently. Amplitudes were significantly larger
for the small-change versus the large-change statistical context
for moderate (t19 � 2.74, P � 0.013) and large (t19 � 4.17,
P � 0.001) spectral changes but nonsignificant for small
spectral changes (t19 � 1.12, P � 0.276; Wilcoxon signed-rank
test: P � 0.314). The topographical distributions of P2 re-
sponses suggest auditory cortex generators, but they appear
slightly more posterior than for the N1 (Fig. 3B).1

Responses to repeated tones that occurred just prior to rare
tones were not different between different statistical contexts

(N1 time window: F1,19 � 0.01, P � 0.92; P2 time window:
F1,19 � 0.33, P � 0.57; Fig. 3D).

Statistical context affects frequency-specific coadaptation.
We used a model of RA to estimate the degree of frequency-
specific coadaptation in auditory cortex from single-trial neural
responses for the two different statistical contexts (Herrmann et
al. 2013a). Figure 4A shows the predicted N1 amplitudes from
linear fits as a function of RA index. Slopes were significantly
different from zero for both statistical contexts (for both: t19 �
15, P � 0.001) and did not differ from each other (t19 � 0.99,
P � 0.34). In other words, the RA index was similarly
predictive of N1 amplitudes for both statistical contexts. No
difference in root mean square error of approximation was

1 As a control analysis to assess the potential influence of baseline correc-
tion, we specifically contrasted N1 amplitudes and P2 amplitudes for the
moderate spectral change between statistical contexts, using an amplitude
reference from a different time window. First, we calculated an overall
context-specific reference. That is, for each statistical context separately,
responses to all tones were averaged and the mean amplitude within the �0.05
to 0 s prestimulus time window was subtracted from the N1 and P2 responses
in the respective moderate spectral change conditions. Amplitudes to moderate
spectral changes were significantly larger in the small-change context than in
the large-change context (N1: t19 � 2.18, P � 0.042; P2: t19 � 2.68, P �
0.015). Because of the absence of slow drift effects between statistical contexts
in the data as indexed by the responses to repeated tones directly preceding rare
stimuli (for which many trials were available; Fig. 3D) and the rigorous control
of the number of repeated stimuli preceding rare stimuli, this reference analysis
provides a robust baseline contrast.

Second, we calculated a reference specific to the moderate spectral changes.
That is, for each statistical context separately, trials for moderate spectral
changes were averaged and the mean amplitude within the �0.05 to 0 s
prestimulus time window was subtracted from the respective amplitudes in the
N1 and P2 time windows. Amplitudes to moderate spectral changes in the
small-change context were larger than in the large-change context, although
this difference was only significant for the P2 (t19 � 2.25, P � 0.037) and not
the N1 (t19 � 0.96, P � 0.347) time window. Note, however, that baseline
contrasts always have the potential danger to introduce amplitude changes into
the time window of interest that are actually present in the baseline time
window and should therefore be used with caution (for a general discussion
regarding pitfalls of baseline correction see Urbach and Kutas 2006).

Third, we calculated ERP component-specific reference contrasts. That is,
similar to previous studies investigating neural RA, we calculated the P1-N1
amplitude difference and the P2-N1 amplitude difference separately for each
statistical context (Briley and Krumbholz 2013; Lanting et al. 2013; Näätänen
et al. 1988). The P1-N1 amplitude difference as well as the P2-N1 amplitude
difference for moderate changes in the small-change statistical context were
significantly larger compared with the differences in the large-change statisti-
cal context (P1-N1: t19 � 2.12, P � 0.048; P2-N1: t19 � 3.59, P � 0.002).

Fig. 4. Prediction of N1 amplitudes by RA and estimated coadaptation. A, left:
predicted N1 amplitudes as a function of RA index. Gray lines reflect
individual fits, colored lines the mean across participants. Red dots at RA � 0
reflect the observed N1 amplitude at no adaptation. Right: mean slopes of the
linear fits and topographical distributions. a.u., Arbitrary unit. B: mean esti-
mated Gaussian width (	) describing coadaptation for each �. Dashed line
marks the recovery observed by Sams et al. (1993) (� � 1.8) for which
statistics were carried out (right). C, left: mean estimated coadaptation function
for each statistical context. Right: mean estimated neural responsiveness taken
from the inverse of the adaptation functions (centered on the frequency of the
repeated tone). The sign of the responsiveness values was flipped to match the
negative amplitudes in the corresponding N1 time window. Error bars reflect
SE. *P � 0.05.
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observed between statistical contexts (t19 � 0.32, P � 0.75).
Mean R2 values were 0.016 (0.013 SD) and 0.028 (0.018 SD)
for the small-change and large-change statistical contexts,
respectively. Note, however, that 1) small R2 values are
expected given the noisy nature of single-trial EEG record-
ings and 2) that linear fits were not performed by minimiz-
ing R2 values but instead were based on the minimum
difference between observed and predicted N1 amplitudes at
no adaptation.

Critically, statistical context influenced the degree of fre-
quency-specific coadaptation in auditory cortex (Fig. 4B). That
is, the estimated 	 was smaller (i.e., the width of the Gaussian
function was narrower) for the small-change statistical context
compared with the large-change statistical context (t19 � 3.57,
P � 0.002). Figure 4C visualizes the estimated frequency-
specific adaptation functions (Gaussian) and the estimated
responsiveness of neural populations (inverse of adaptation)
for each condition.

For the P2 time window, the RA index predicted single-trial
amplitudes in both statistical contexts. That is, the slopes of the
linear fit were significantly different from zero (for both: t19 �
8.5, P � 0.001) and not different between statistical contexts
(t19 � 1.10, P � 0.28; Fig. 5A). Root mean square errors were
not different between contexts (t19 � 0.97, P � 0.34). Mean R2

values were 0.007 (0.004) and 0.009 (0.006 SD) for the
small-change and large-change statistical contexts, respec-
tively. Critically, the estimated 	 reflecting the degree of
frequency-specific coadaptation was smaller for the small-
change statistical context compared with the large-change
statistical context (t19 � 2.25, P � 0.037; Fig. 5B). Figure 5C
visualizes the estimated frequency-specific adaptation func-
tions (Gaussian) and the estimated responsiveness of neural
populations (inverse of adaptation) for each condition.2

Taking the ERP data and the modeling data together, it
appears that observed ERP amplitudes and estimated neural
responsiveness match more clearly for the N1 than the P2 time
window. This could be due in part to the choice of the model’s
decay parameter based on N1 work (� � 1.8; Sams et al. 1993),
which is well within the range of previous estimations for the
N1 (Lü et al. 1992; Mäkelä et al. 1993; McEvoy et al. 1997)
and which was chosen because of a lack of previous P2 decay
estimations. Alternatively, it might be that an additional pro-
cess underlies P2 amplitude modulations that is not captured by
the adaptation model. Nevertheless, the present results show
influences of statistical context on N1 and P2 stimulus-specific
adaptation, which are most clear for the N1 time window.

DISCUSSION

The present human EEG study investigated the dynamics
underlying stimulus-specific neural adaptation in auditory odd-
ball sequences. Human participants listened to tones in two
statistical contexts that were identical in their spectral range but
differed in relative probabilities of rare spectral changes. Au-
ditory cortex responses in those contexts in which large spec-

tral changes occurred with high relative probability showed
stronger neural adaptation than responses in contexts in which
large spectral changes occurred with low relative probability.
Thus the present data show that the state of stimulus-specific
coadaptation in auditory cortex depends on statistical charac-
teristics of the entire stimulation history.

Neural response magnitude depends on spectral change as
well as on statistical context. In the present study we observed
that neural responses (N1 and P2 components) increased with
increasing spectral change between the repeated and the rare
tone frequencies. This increase reflects a release from stimulus-
specific neural RA and is in line with previous studies in
humans (Briley and Krumbholz 2013; Butler 1968; Herrmann
et al. 2013a, 2014; Lanting et al. 2013; May et al. 1999;
Näätänen et al. 1988; Picton et al. 1978; Yvert et al. 1998) and
studies conducting animal electrophysiology (Anderson et al.
2009; Hershenhoren et al. 2014; Malmierca et al. 2009; Taaseh
et al. 2011; Ulanovsky et al. 2003; von der Behrens et al.
2009).

Critically, the present ERP and modeling data show that the
degree of stimulus-specific adaptation in auditory cortex de-

2 We also estimated coadaptation (	) for each statistical context using 	t �
0.5 s (instead of 	t � 0.32 s), that is, assuming that recovery from adaptation
starts at the onset rather than at the offset of the tone presentation. For the N1
and the P2, we again observed a significant difference between statistical
contexts (N1: t19 � 5.247, P � 0.001; P2: t19 � 2.978, P � 0.0077), showing
that coadaptation broadened in the large-change compared with the small-
change statistical context.

Fig. 5. Prediction of P2 amplitudes by RA and estimated coadaptation.
Descriptions similar to those for Fig. 4 apply, except that no sign flip for
responsiveness values in C was required. *P � 0.05.
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pends on the statistical stimulation context. Our data are in line
with early work on stimulus-specific adaptation, which was
partially motivated by observations of statistical adaptation
(Ulanovsky et al. 2003), and with the suggested role of local
and global stimulus probabilities on adaptation of neural re-
sponses (Ulanovsky et al. 2004). Furthermore, observations of
overall context effects in oddball paradigms (Yaron et al. 2012)
as well as inconsistences between model fits and recent stim-
ulus-specific adaptation data (Hershenhoren et al. 2014; Taaseh
et al. 2011) have led to considerations of dynamic coadaptation
involved in stimulus-specific adaptation (Hershenhoren et al.
2014). Our data suggest that the instantaneous state of coad-
aptation in auditory cortex is dynamically influenced by all
stimuli in the acoustic oddball sequence rather than being a
static property of the underlying neural population. The present
data are thus in line with this recent hypothesis in that stimulus-
specific adaptation depended on statistical context.

Importantly, the present results cannot be explained by
assuming a general decrease (or increase) in response magni-
tude to rare tones that occur with higher probability (Ayala and
Malmierca 2013; Ulanovsky et al. 2003) or different timescales
of adaptation (Ulanovsky et al. 2004), both of which would
predict a consistent effect of probability of presentation on N1
magnitudes. Counter to this prediction, we found that for a
fixed tone frequency (either large or small spectral change),
probability of occurrence (relatively high or low) had opposite
effects. For the large spectral change, the N1 magnitude was
reduced when presented with a high compared with a low
probability. The reverse was true for a small spectral change:
the N1 magnitude was increased when presented with a high
compared with a low probability. Hence, the present results
indicate that changes in neural sensitivity depend on the sta-
tistical context, and not simply on a general decrease (or
increase) in response magnitude based on probability of rare
stimuli to occur.

Mechanisms of stimulus-specific and statistical adaptation
and proposed interactions. Stimulus-specific adaptation, that
is, the decrease in response magnitude with repeated stimula-
tion, has been linked to synaptic depression and neural inhibi-
tion (Abbott et al. 1997; Escera and Malmierca 2014; Loebel et
al. 2007; Nelken 2014; Ulanovsky et al. 2004). Inhibition,
however, appears to only modulate but not generate stimulus-
specific adaptation (Duque et al. 2014; Pérez-González et al.
2012). Stimulus-specific adaptation of the human N1 compo-
nent has been explained by refractoriness of neural populations
(Budd et al. 1998; Jacobsen and Schröger 2001; Schröger
2007) and by inhibition (Loveless et al. 1989; May et al. 1999;
McEvoy et al. 1997), while adaptation effects of the P2 are less
well investigated (but see Herrmann et al. 2013a; Lanting et al.
2013; Picton et al. 1978) and mechanistically less well under-
stood (Crowley and Colrain 2004).

Whether stimulus-specific adaptation observed at the single-
unit or population level in nonhuman animals and modulations
of human EEG responses relate to the same neural mechanism
is still a matter of debate (Escera and Malmierca 2014; Fish-
man and Steinschneider 2012; Nelken 2014; Nelken and
Ulanovsky 2007). These debates often focus on the relation
between stimulus-specific adaptation and the human mismatch
negativity (MMN), a component associated with change, nov-
elty, and deviant detection that peaks after 150 ms (Näätänen et
al. 1978, 2007; Ruhnau et al. 2013; Schröger 2007; Sussman et

al. 2002). More recently, human midlatency neural responses
(�30 ms) have also been discussed as potential candidates
related to stimulus-specific adaptation observed in animals
(Escera and Malmierca 2014). Human N1 and P2 responses are
commonly left out of these discussions. It is thus an open
question what the exact mechanisms of N1 adaptation are and
whether adaptation effects observed in animals and humans
have the same source.

Adaptation to statistical context is commonly associated
with changes in neural sensitivity such that a limited range of
neuronal responsiveness comes to match the range of the
sensory stimulation (Brenner et al. 2000; Hildebrandt et al.
2011; Wark et al. 2007; Wen et al. 2009, 2012). This type of
adaptation relates to changes in the input-output relation of a
neuron (i.e., the stimulation-to-response mapping), such that
the same stimulus (input) leads to different neural responses
(output) depending on the acoustic context (Carvalho and
Buonomano 2009; Hildebrandt et al. 2011; Silver 2010). On
the neuronal level, statistical adaptation (i.e., change of the
input-output relation) is associated with changes in neuronal
firing thresholds (linear) and/or changes in neuronal response
gain (nonlinear), and both have been observed in animal cell
recordings (Dean et al. 2005; Hildebrandt et al. 2011; Nagel
and Doupe 2006; Salinas and Thier 2000; Silver 2010).

Regarding the neural mechanisms underlying statistical con-
text effects, some authors have reported a mechanistic distinc-
tion between linear and nonlinear changes, by which firing
threshold changes (linear) are linked to synaptic depression and
changes in neural gain (nonlinear) are related to neural inhibi-
tion (Hildebrandt et al. 2011). However, other authors empha-
size the role of synaptic depression related to nonlinear
changes (Abbott et al. 1997), while yet other authors report that
both changes in neuronal firing threshold as well as changes in
neuronal response gain are related to inhibitory neurons, albeit
to different classes of neurons (Wilson et al. 2012).

The changes in coadaptation induced by statistical context
observed in the present study are fundamentally nonlinear and
thus relate to changes in neuronal response gain, yet the extent
to which synaptic depression (Abbott et al. 1997) versus neural
inhibition (Carvalho and Buonomano 2009; Hildebrandt et al.
2011; Olsen and Wilson 2008; Wilson et al. 2012) or even
additional mechanisms (for a review on neural input-output
relations see Silver 2010) contributes to the present context
effects cannot be inferred from our human EEG recordings.
Nonetheless, a critical role of neural inhibition in shaping
frequency specificity is consistent with observations of reduced
stimulus-specific adaptation under GABAergic agonists (i.e.,
reduction of inhibition, Ayala and Malmierca 2013; Duque et
al. 2014; Pérez-González et al. 2012; although GABAergic
agonists might also affect synaptic depression, Loebel et al.
2007), with the suggestion of network coding for statistical
adaptation (Rabinowitz et al. 2011; see also the discussion in
Willmore et al. 2014), and with the proposed neural mecha-
nisms underlying N1 adaptation (Loveless et al. 1989; May et
al. 1999; McEvoy et al. 1997).

Neural response adaptation and its relation to other ERP
components. Many previous EEG studies presenting oddball
sequences have investigated the MMN component of the ERP,
which commonly peaks at �150 ms after tone onset (Näätänen
et al. 1978, 2010; Ruhnau et al. 2012; Sussman et al. 2002).
Furthermore, an additional positive deflection at �250–400
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ms, referred to as P3a, is sometimes observed in response to
rare tones in oddball sequences (Berti et al. 2004; Ruhnau et al.
2013; Winkler et al. 1998). Given the time window of the
MMN and P3a in combination with the large spectral changes
employed here, the present study cannot exclude potential
contributions of MMN and P3a to the observed N1 and P2
responses, respectively. Regarding a potential contribution of
an MMN to the observed N1, however, it should be noted that
whether these two components are related to same neural
mechanism has been long debated and remains an unresolved
question. In fact, the MMN has repeatedly been related to
neural RA and therefore regarded as an N1-type response (May
et al. 1999; May and Tiitinen 2004, 2010). Furthermore, the
MMN’s amplitude increase with increasing magnitude of a
spectral change has been shown to be mostly due to N1 neural
RA effects (Horváth et al. 2008). In sum, the present effects are
most likely caused by neural RA, but other response types
might additionally contribute. Future experiments are needed
to clearly dissociate different contributors.

Dynamics of response adaptation have implications for
isolating deviant-detection responses. The present results also
have implications for EEG research on deviant detection using
the MMN component of the ERP (Näätänen et al. 1978;
Schröger 2007; Winkler et al. 2009). To isolate deviant-
detection responses, a common approach in MMN studies is to
remove N1 stimulus-specific adaptation effects (referred to as
refractoriness; Schröger 2007). That is, either the neural re-
sponses to repeated stimuli (Alho et al. 1998; Ermutlu et al.
2007; Näätänen et al. 1978) or the neural responses to a
stimulus from a control sequence with random stimuli (Hor-
váth et al. 2008; Jacobsen and Schröger 2001; Ruhnau et al.
2012; Schröger and Wolff 1996) are subtracted from the
responses to the rare stimuli. However, this subtraction proce-
dure implicitly assumes stationarity of stimulus-specific adap-
tation effects within the control as well as within the oddball
sequences. In stark contrast, the present data show that the
statistical context, that is, all stimuli within a sequence, affects
the degree of stimulus-specific adaptation, and thus violates the
assumption of stationarity of neural RA in oddball paradigms.
Furthermore, recent studies have also observed dynamic
changes in neural adaptation for sequences with random tone
presentation that are often used as adaptation control condi-
tions (Garrido et al. 2013; Herrmann et al. 2013a, 2013b,
2014). As a consequence, estimation of the appropriate re-
sponse magnitude to be subtracted from responses to rare tones
in order to isolate deviant-detection responses is not trivial:
Neural responses change nonlinearly and adjust flexibly within
oddball and control sequences depending on their statistical
acoustic context.

Conclusions. The present human EEG study investigated the
effects of statistical context on stimulus-specific adaptation in
auditory oddball sequences. Results show that stimulus-spe-
cific adaptation of neural responses in human auditory cortex
critically depends on the statistical context in which stimuli
occur. Using a computational model of neural RA, we link the
observed statistical context effects to coadaptation changes in
tonotopically organized regions of auditory cortex. The present
results have implications for the assumption of stationarity of
neural responses when isolating deviant-detection responses
using established auditory potentials such as the MMN.
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