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Abstract

Rhythm is important in the production of motor sequences such as speech and song. Deficits in rhythm processing have
been implicated in human disorders that affect speech and language processing, including stuttering, autism, and dyslexia.
Songbirds provide a tractable model for studying the neural underpinnings of rhythm processing due to parallels with
humans in neural structures and vocal learning patterns. In this study, adult zebra finches were exposed to naturally
rhythmic conspecific song or arrhythmic song. Immunohistochemistry for the immediate early gene ZENK was used to
detect neural activation in response to these two types of stimuli. ZENK was increased in response to arrhythmic song in the
auditory association cortex homologs, caudomedial nidopallium (NCM) and caudomedial mesopallium (CMM), and the
avian amygdala, nucleus taeniae (Tn). CMM also had greater ZENK labeling in females than males. The increased neural
activity in NCM and CMM during perception of arrhythmic stimuli parallels increased activity in the human auditory cortex
following exposure to unexpected, or perturbed, auditory stimuli. These auditory areas may be detecting errors in
arrhythmic song when comparing it to a stored template of how conspecific song is expected to sound. CMM may also be
important for females in evaluating songs of potential mates. In the context of other research in songbirds, we suggest that
the increased activity in Tn may be related to the value of song for assessing mate choice and bonding or it may be related
to perception of arrhythmic song as aversive.
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Introduction

Human speech and avian song have many parallels: both are

acquired through sensorimotor learning, and when well-formed

they are rhythmically structured in time. There is increasing

evidence that rhythm plays an important role in speech and

language processing. During development, rhythm perception

ability is positively correlated with language and literacy skill [1].

Moreover, children with specific language impairment (language

delay) have deficits in rhythm processing that include the ability to

move in synchrony with a beat [2,3]. People who stutter also

appear to have deficits in internal rhythm generation and timing

for speech, but can produce fluent speech when paced by an

external rhythm such as a metronome [4], another speaker [5], or

singing [6]. A number of other human disorders also involve

disruptions in timing and/or rhythm processing. For example,

individuals with autism have been proposed to show deficits in

temporal processing [7], with presentation of auditory rhythms

possibly alleviating some symptoms [8]. Disruptions in aspects of

timing or rhythm processing have also been observed in patients

with attention deficit hyperactivity disorder (reviewed in [9]),

schizophrenia (reviewed in [9]), and dyslexia [10]. Parkinson’s

disease patients also show significant impairment in rhythm

perception [11]. Thus, a better understanding of the neural bases

of rhythm processing could elucidate mechanisms associated with

a wide range of human developmental and psychiatric disorders.

Zebra finches represent an excellent potential model for

studying neural mechanisms of timing and rhythm perception.

As songbirds, they produce highly rhythmic vocalizations used for

courtship and the defense of nest sites [12]. Zebra finch song

begins with a series of short introductory notes, followed by several

repetitions of an ordered set of notes called a motif (Figure 1). A

complete sequence of introductory notes and subsequent motifs

performed without a prolonged silent interval is referred to as one

song bout. The intervals between notes are very regular. This

consistent natural rhythm of zebra finch song [12] provides a

relatively unique opportunity to study rhythm as a discriminatory

characteristic. Furthermore, as an animal model, zebra finches

provide an opportunity to study the neural basis of rhythm

perception in a more direct manner than possible with humans.

Zebra finches are vocal learners [13] and, similarly, normal

human rhythm processing has been proposed to be a by-product
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of vocal learning mechanisms [14]. Moreover, as vocal learners,

zebra finches learn to sing in a manner similar to the way humans

develop speech (reviewed in [13]). Both species initially form an

auditory template by listening to vocal production of adult tutors.

They then practice and improve on their own vocalizations, which

include subsong in birds and babbling in humans, and ultimately

produce adult crystalized song in zebra finches and fluent speech

in humans. In both species, critical periods exist after which vocal

learning is strongly limited. In addition to the similar develop-

mental trajectories, humans and zebra finches have substantial

parallels in the neural structures underlying the perception,

learning, and production of vocalizations [15]. Area X, part of

an anterior circuit involved in song learning, is not visible in

female zebra finches [16,17] who do not sing, and is homologous

to the human striatum [18,19] which is involved in language

learning [20]. HVC (proper name) is similar to the premotor

cortex [21] and the robust nucleus of the arcopallium (RA) is

similar to the motor cortex in humans [22]. Both HVC and RA

are part of a motor circuit involved in song production. Both of

these areas are larger in male than in female zebra finches [16,17].

Although only male zebra finches sing, females likely also acquire

a song template from their fathers [23–25], which is presumably

used as a model for quality in the selection of potential mates

[12,26,27]. The caudomedial nidopallium (NCM) and caudome-

dial mesopallium (CMM), while anatomically distinct in the zebra

finch brain, are both considered homologous to the auditory

association cortex in humans [28]. The lateral magnocellular

nucleus of the anterior nidopallum (LMAN) is part of the circuit

essential for song learning, and is necessary for song plasticity

during development [29–31] and in adulthood [32–34]. A

homologous region to LMAN within the human brain has not

been identified.

Many studies have investigated zebra finch auditory perception

and the factors influencing neural responses to auditory stimuli. A

marker commonly used to assess neural activation in zebra finches

is the immediate early gene ZENK [35–43]. ‘ZENK’ is an

acronym used to identify the evolutionally conserved protein based

on names from other species, specifically zif-268 [44], egr-1 [45],

NGFI-A [46], and Krox-24 [47]. The ZENK protein has a DNA

binding site and can regulate the expression of other genes [48]. It

is thought to be involved in synaptic plasticity, and memory [49].

Extracellular signal-related kinase is an upstream component of

the signaling pathway including ZENK; its inhibition blocks

induction of ZENK in the zebra finch auditory cortex [38]. If the

pathway for ZENK induction is interrupted in juvenile zebra

finches, song learning is significantly reduced [50].

Both male and female zebra finches show robust induction of

ZENK in multiple brain regions in response to conspecific song

[36]. For example, NCM and CMM express high levels of ZENK

following zebra finch song playbacks [40–42]. Investigations have

also repeatedly demonstrated increased ZENK with presentation

of conspecific compared to heterospecific song, pure tones, or

silence in both adults [42,51] and juveniles [35,36]. The increase

in neural activity in response to conspecific song has been

demonstrated using other methodologies such as fMRI [52,53],

and electrophysiology [54]. ZENK expression in NCM and CMM

is also greater in response to song from tutored compared to

untutored zebra finch males [43,55]. Immediate early gene

expression following tutor song presentation is significantly

correlated with the strength of song learning [56,57]. Together

these results suggest that ZENK expression in auditory cortical

Figure 1. Representative spectrograms of rhythmic and arrhythmic song. Images depict 7.5 seconds of representative rhythmic and
arrhythmic song stimuli. They were generated from the same natural song. Introductory notes are indicated with I. A, B, and C indicate 3 distinct
notes that compose a motif. Each image contains two bouts of song.
doi:10.1371/journal.pone.0108841.g001
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regions is highest in response to stimuli that are most similar to the

song template learned during development.

Distinct patterns of ZENK expression suggest that specific brain

regions are activated by hearing song and others are associated

with producing it [39,41]. In canaries, singing induces ZENK

expression in HVC, RA, LMAN, and Area X, among other nuclei

[39]. Hearing conspecific song creates a different pattern of ZENK

expression in canaries, with abundant expression in portions of the

primary auditory cortex homolog field L, as well as CMM and

NCM [39]. Parallel patterns of ZENK expression are seen in

zebra finches that sing or hear conspecific song [41]. In zebra

finches, HVC also shows significant electrophysiological responses

to a bird’s own song in anesthetized subadults [58] and sleeping

juveniles, and tutor’s song in awake juveniles [59], with much less

response to other conspecific songs. However, the same pattern

has not been described in ZENK responses [37] when assessed in

awake adults.

While many aspects of zebra finch auditory responses have been

studied, little is known about their perception of rhythm, and

whether rhythm is a salient factor in their discrimination of songs.

To evaluate whether rhythmicity influences neural responses, and

which brain regions are involved in processing information about

rhythmic structure in zebra finches, the present study exposed

adult males and females to conspecific songs with normal structure

(‘rhythmic’) or the same vocalizations with varied timing of syllable

onset while maintaining the same syllable order (‘arrhythmic’).

The density of ZENK immunoreactive cells was assessed in several

brain areas of interest, including regions important to song

production and perception. Expression was also quantified in

nucleus taeniae (Tn; a homolog to the mammalian amygdala,

[60]), because an initial qualitative assessment indicated particu-

larly strong labeling there. We hypothesized that ZENK expres-

sion would differ in birds exposed to rhythmic or arrhythmic song

in nuclei involved in the perception or evaluation of auditory

stimuli.

Materials and Methods

Animals
Zebra finches were raised in walk-in aviaries at Michigan State

University, each containing 5–7 pairs of males and females with

their offspring. Birds were maintained on a 12:12 light:dark cycle

with lights turning on at 7 am and provided ad libitum access to

seed (Kaytee Finch Feed, Chilton, WI), water, gravel and

cuttlebone. Their diet was supplemented weekly with hard boiled

chicken eggs mixed with bread, as well as spinach and oranges.

Once birds reached adulthood (at least 90 days of age), they were

transferred to adjacent single sex walk-in aviaries and allowed a

minimum of 10 days to acclimate to their new housing prior to

experimental stimulus exposure. Birds could see and hear birds of

the opposite sex, but could not physically interact. Animals in the

study were less than 1 year old.

Ethics Statement
All protocols were approved by the Institutional Animal Care

and Use Committee of Michigan State University (#01-13-006-

00).

Stimulus Creation
Nine 30-second rhythmic song stimuli and nine 30-second

arrhythmic song stimuli were formed using Praat software [61]

(Figure 1). To create these stimuli, nine zebra finch song

recordings were selected from Boston University’s Laboratory of

Neural Circuit Information Zebra Finch song data set (http://

people.bu.edu/timothyg/song_website/index.html). For each

stimulus, introductory syllables and two subsequent motifs (motif

1 and motif 2) were extracted from a recording. They were

alternated 5 times, forming an alternating (1-2-1-2-1) motif

structure. Thus a single bout of a song consisted of an

unmanipulated sequence of introductory notes, followed by five

unmanipulated motif productions (Figure 1). To form a complete

rhythmic song stimulus, bouts were repeated for 30 seconds, with

at least 0.4 seconds of silence between each bout presentation. The

remaining silence, after repeating bouts until a complete bout

could not be repeated without surpassing 30 seconds, was

distributed evenly across the intervals between bouts so that each

complete stimulus was 30 seconds. Across the rhythmic stimuli,

silence between bouts ranged from 0.4 to 1.4 seconds (mean

silence between bouts = 0.8 seconds). The 9 rhythmic song stimuli

were divided into 3 groups of 3 such that the total length of silence

was similar across groups. Maintaining a similar amount of total

auditory stimulus across groupings was important because

duration of song exposure can influence levels of ZENK

expression [40].

To create the nine arrhythmic song stimuli, the length of each

interval between syllables (other than between introductory notes),

motifs, and bouts of the rhythmic song stimuli was altered using

Matlab (The Mathworks, Inc., Natick, MA). The same total

amount of spacing within the 30-second stimulus was retained.

However, each interval was randomly changed to one of three

durations: 1) 10 ms, 2) the average duration (based on all intervals

in a song except those between introductory notes), or 3) double

the average duration, minus 10 ms. After all but the final interval

had been changed to one of those three durations, the final one in

each song was changed to the duration needed to add up to the

original total (Figure 1). In this manner, the sequential order of

syllables was preserved, but the rhythmicity, or regularity, of the

timing of the syllables was disrupted, yielding arrhythmic songs.

The 9 arrhythmic song stimuli were divided into 3 groups of 3

corresponding to the same grouping as the rhythmic stimuli.

There were a total of 6 groups, 3 in the rhythmic condition, and 3

in the arrhythmic condition.

Song Exposure
For each stimulus type, 9 males and 9 females were exposed.

Presentation of stimuli was controlled using E-Prime 2.0 software

(Psychology Software Tools, Inc., Pittsburgh, PA). Individual birds

were exposed to a stimulus inside an 11.25068.50615.250 cage

within a 7920614990 room with lights on. First, a 1-hour period of

silence allowed birds to acclimate to the testing room. Following

the hour of silence, each bird was exposed to one group of 3 songs

(either rhythmic or arrhythmic, randomly selected). Songs were

played from a single speaker adjacent to the testing cage. Song

stimuli were presented in pseudo-random order for a total of 30

presentations (10 presentations of each 30-second song), yielding a

total of approximately 15 minutes of song. For every 3 presenta-

tions, each song was heard once. There were 30 seconds of silence

between each song. Therefore, the song presentation portion of

the procedure lasted approximately 30 minutes. All songs were

played within the volume range of normal zebra finch song, at

approximately 70 dB. Both the testing room and all stimuli were

novel for all birds. All testing occurred between 9 am and 3 pm,

with a maximum of two birds tested in a day. Different stimulus

groups were randomized across morning and afternoon testing

times. Following song exposure animals remained in the testing

room for 1 hour undisturbed in order to allow ZENK protein

expression to reach peak levels [41]. They were then euthanized

by rapid decapitation, whole brains were collected and frozen in
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methylbutane. Brains were stored at 280uC until further

processing.

All of the song exposures were recorded using a Canon Vixia

HF R300 camcorder. Recordings of all of the males were reviewed

to ensure that the bird did not sing in response to the song

presentation, as this could lead to a different pattern of ZENK

expression in the brain than auditory song exposure alone [39,41].

No males sang. Across both stimulus conditions, birds generally

responded to the initiation of song by adopting an upright, alert

posture, orienting toward the speaker, and some emitted a few

chirps. All recordings were reviewed to determine whether excess

background noise was present. Two birds were eliminated from

analysis due to the presence of substantial, unanticipated noise

near the testing room. A few other animals were eliminated from

analysis of individual brain regions due to histological artifact.

Final sample sizes are indicated in the figures.

Tissue Processing
Brains were coronally sectioned at 20 mm and thaw mounted

onto SuperFrost Plus slides (Fisher Scientific, Hampton, NH) in 6

series. Tissue was stored at 280uC until further processing. One

series of slides was processed using immunohistochemistry for

ZENK. Tissue was run in three groups due to the large number of

slides; both sex and stimulus conditions were equally represented

in each. Tissue was warmed to room temperature then rinsed in

0.1 M phosphate-buffered saline (PBS). It was then fixed in 4%

paraformaldehyde, rinsed 365 minutes with PBS, and treated for

30 minutes with 0.9% H2O2 in methanol. It was rinsed with PBS,

and incubated in 5% normal goat serum in PBS with 0.3% Triton

X-100 for 30 minutes. Next, it was incubated overnight in a

ZENK (Egr-1) rabbit polyclonal antibody (0.5 mg/ml, sc-189,

Santa Cruz Biotechnology, Inc., Dallas, TX) in 5% normal goat

serum in PBS with 0.3% Triton X-100 at 4uC. The tissue was

rinsed in PBS and exposed to a biotin-conjugated goat anti-rabbit

secondary antibody (0.5 mg/ml; Vector Labs, Burlingame, CA) in

PBS with 0.3% Triton X-100 for 2 hours at room temperature.

Following PBS rinses, it was incubated in Elite ABC reagents

(Vector Labs, Burlingame, CA) for 1 hour, washed with PBS and

Tris-buffered saline and then treated with diaminobenzadine in

tris-buffered saline with 0.003% H2O2 to produce a brown

reaction product. The reaction was terminated with PBS, and the

tissue was dehydrated and coverslipped with DPX (Sigma–

Aldrich, St. Louis, MO).

An adjacent series was stained with thionin to allow confirma-

tion of the location of the brain regions of interest: NCM, CMM,

Tn, lateral and medial striatum, HVC, and LMAN. The auditory

cortical regions NCM and CMM were selected due to their role in

song learning and perception. The telencephalic song control

nuclei, striatum, HVC and LMAN, were selected due to their role

in song learning and song production. Tn was selected because it is

involved in motivated behaviors in birds [60], and on initial

inspection of the tissue it showed high levels of ZENK expression.

Analysis of tissue sections was conducted by an observer blind to

treatment condition and sex, using ImageJ software (National

Institutes of Health). Each brain region was assessed bilaterally in

two adjacent sections in each animal. For all brain regions

assessed, a cell was considered labeled if it contained a round

nuclear area densely filled with brown stain which was darker than

the general background coloring seen in surrounding areas. For

NCM, a 0.525 mm*0.393 mm box was placed with the medial

corner under the hippocampus at the point where the ventricle

begins to curve ventrally to run parallel with the midline

(Figure 2C). A grid of 0.066 mm*0.065 mm rectangles existed

within the box, and cells were counted in alternating cells of the

grid excluding cells that overlapped with the bottom or left edge of

each grid box. Density was determined by dividing the total

number of labeled cells by half of the total area of the region

analyzed. Cells within NCM were counted in the section prior to

the start of RA and the first section containing RA. For CMM, a

0.496 mm*0.205 mm box was placed under the ventricle lateral to

where it curves ventrally toward the midline between A 1.6 and A

1.2 from a songbird brain atlas [62] (Figure 3E). Area X is located

in the lateral striatum of males, but is typically not visible in

females [63]. Initial observations indicated substantial differences

in the patterns of ZENK expression between the medial and

lateral striatum. A box of 0.492 mm*0.492 mm was placed in the

lateral portion of the medial striatum. For the medial striatum, a

box of the same size (0.492 mm*0.492 mm) was placed half way

between the midline and the location quantified in the lateral

striatum (Figure 4A). Labeled cells were counted in striatum

sections starting in the 4th section after the appearance of LMAN

in order to maintain a landmark that was visible in both sexes. For

Tn, a 0.238 mm*0.244 mm box was placed near the ventral edge

of the telencephalic lobe where a corner is formed by the ventral

and medal edges of the lobe (Figure 5C). As with NCM, cells in

Tn were counted in the section prior to the start of RA and the

first section containing RA.

Limited labeling was detected in HVC and LMAN, so it was not

quantified. However, a qualitative analysis was conducted, in

which the areas were observed bilaterally in two adjacent sections

and assigned a score from 0 to 2. Zero indicated no labeled cells

within the nucleus, 1 indicated very sparse staining or staining that

was very light in color, and 2 indicated dark labeling or dense

populations of labeled cells within the nucleus.

Statistics
Separate two-way ANOVAs were computed for NCM, CMM,

and Tn to determine whether rhythmicity of the stimulus and sex

influenced the density of ZENK-immunolabeled cells within the

region. A mixed model ANOVA was used for the striatum to

assess whether rhythmicity and sex (between animals), as well as

location within the striatum (within animals), influenced the

density of ZENK-immunolabeled cells. To investigate an interac-

tion, paired t-tests were conducted within each sex for lateral and

medial striatum. All statistics were calculated using SPSS 21 (IBM,

Armonk, NY).

Results

In NCM, a significant main effect of stimulus condition was

found (F1,31 = 5.73, p = 0.023), such that the density of ZENK-

immunolabeled cells was greater in birds exposed to arrhythmic

than rhythmic song (Figure 2). There was no effect of sex on

density of ZENK labeled cells (F1,31 = 0.09, p = 0.765), and no

significant interaction between stimulus condition and sex

(F1,31 = 0.02, p = 0.885).

A significant effect of stimulus condition was also detected in

CMM (F1,31 = 4.34, p = 0.046). As in NCM, birds exposed to

arrhythmic song had an increased density of ZENK-immunola-

beled cells. A main effect of sex was also detected in CMM

(F1,31 = 4.55, p = 0.041), such that females had greater density of

ZENK-immunolabeled cells than males (Figure 3). A significant

interaction between rhythm condition and sex was not detected

(F1,31 = 0.68, p = 0.414).

In Tn, a significant main effect of stimulus type was found

(F1,31 = 4.64, p = 0.039; Figure 5). As in NCM and CMM, birds

exposed to arrhythmic song had greater density of ZENK-

immunolabeled cells (Figure 5). There was no effect of sex

Neural Responses to Rhythmicity of Birdsong
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(F1,31 = 0.11, p = 0.737) and no interaction between rhythm

condition and sex (F1,31 = 0.29, p = 0.596).

Unlike the other areas quantified, the striatum did not show

differences between the two stimulus types – ZENK expression

was equivalent across birds exposed to normal and arrhythmic

songs (F1,30 = 0.23, p = 0.633). There was also no significant effect

of sex (F1,30 = 0.39, p = 0.537). However, a significant difference

existed between the lateral and medial striatum (F1,30 = 92.70, p,

0.001), and this relationship was affected by sex (sex6location

interaction: F1,30 = 11.94, p = 0.002). Expression in both males

and females was greater in the medial than lateral striatum

(t16 = 7.972, p,0.001 and t16 = –5.514, p,0.001 respectively), but

the difference appeared much larger in males, largely due to a near

absence of labeling in the lateral striatum (Area X) of males

(Figure 4). There was no significant interaction between location

within the striatum and stimulus condition (F1,30 = 0.54,

p = 0.470), nor was there an interaction between sex and stimulus

condition (F1,30 = 0.29, p = 0.597). The three-way interaction

among sex, location in the striatum, and stimulus condition was

also not statistically significant (F1,30 = 1.43, p = 0.241).

For LMAN and HVC qualitative scoring was done in which

birds were assigned a number on a 0–2 scale, with 0 indicating no

detectable ZENK, 1 indicating light or very sparse labeling, and 2

indicating dark and/or abundant staining comparable to that seen

in NCM. In both LMAN and HVC, scores were very similar

across the sexes and stimulus conditions and were mostly 0s

(Table 1). No animals were assigned 2s for either brain region

(Figure 6).

Discussion

Summary
The present results indicate that arrhythmic song induces

greater ZENK expression in the auditory cortical areas, NCM and

CMM, and the amygdala homolog, Tn, compared to un-

manipulated (rhythmic) zebra finch song. Effects of stimulus type

were not observed in Area X, LMAN or HVC, indicating that

these differences in neural responses to song rhythmicity in the

adult zebra finch are specific to the regions described. Effects

associated with the sex of the animals were detected in two brain

areas. First, greater ZENK expression was induced in CMM in

Figure 2. Density of ZENK expressing cells in NCM. Panels A and B depict representative samples of ZENK immunohistochemical labeling in
birds exposed to rhythmic (A) or arrhythmic (B) song. Panel C depicts an adjacent section stained with thionin; the box indicates the area where cells
were counted. Panel D shows the density of ZENK expressing cells between sexes and stimulus types (mean 6 standard error). There was a significant
main effect of sex, indicted by an asterisk. Sample sizes are noted within the bars.
doi:10.1371/journal.pone.0108841.g002
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females compared to males across stimulus groups. Second, while

labeling across the sexes was increased in the medial compared to

lateral striatum, the difference was greater in males due to a near

absence of ZENK expression in Area X following both types of

song stimuli.

NCM and CMM
The results in NCM and CMM of increased ZENK expression

with arrhythmic as compared to rhythmic song can be considered

in the context of human auditory processing. In humans the

auditory association cortex has increased activity in response to

Figure 3. Density of ZENK expressing cells in CMM. Panels A-D depict representative samples of ZENK immunohistochemical labeling in a
female exposed to rhythmic song (A), female exposed to arrhythmic song (B), male exposed to rhythmic song (C), and a male exposed to arrhythmic
song (D). Panel E depicts a thionin stained adjacent section; the box indicates the area where cells were counted. Panel F depicts the density of ZENK
expressing cells between sexes and stimulus types (mean 6 standard error). A significant main effect of stimulus type is indicated by the asterisk. A
significant main effect of sex is represented by the different lower case letters. Sample sizes are noted within the bars.
doi:10.1371/journal.pone.0108841.g003
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unexpected perturbations in one’s own speech [64]. Neurons in

this area are thought to code for mismatch between expected and

perceived auditory feedback [64,65]. The pattern of results seen in

NCM and CMM is consistent with data from humans, in which

fMRI revealed greater activity in the secondary auditory cortex

with exposure to an arrhythmic compared to a rhythmic tone

sequence [66]. Thus, one possibility is that the increase in neural

activity in NCM and CMM in response to arrhythmic song stems

from detection of deviation from the temporal regularity expected

based on the learned song template. Data on comparisons of

conspecific to heterospecific song are consistent with this idea.

Songs from birds other than zebra finches produce little or no

expression of ZENK in both NCM and CMM, whereas

conspecific song produces a robust response in these regions

[42,51]. We suggest that arrhythmic song is similar enough to

natural zebra finch song so as to be detected as a (perhaps

inappropriate) variant of conspecific song, whereas heterospecific

song is different enough that it does not activate this system of

error detection. It will now be important to determine whether

auditory template formation during development is necessary for

zebra finches to be sensitive to the rhythmic characteristics of

conspecific song.

Exposure to reverse zebra finch song has been used as a way of

testing neural response to changes in temporal pattern [67],

because the total amount of song and the spectral qualities remain

unchanged from normal conspecific song. However, reverse song

differs from normal vocalizations in more characteristics than

rhythmicity, including the onset and decline within each note and

the overall structure of the bout. Reverse song induces less neural

activation than other forms of conspecific song in some

populations of cells within NCM [68]. These results indicate that

the aspects of song altered by reversing it, including timing, bout

structure and individual note dynamics, are important for neural

responses to conspecific song within NCM. Thus, one possibility is

Figure 4. Density of ZENK expressing cells in the striatum. Panel A depicts a thionin stained section, with boxes showing the lateral and
medial areas in which cell densities were assessed. Panel B is from a representative male exposed to rhythmic song, and C is from a female exposed to
arrhythmic song. Panel D depicts the density of ZENK expressing cells between sexes, stimulus types, and location within the striatum (mean 6
standard error). A main effect of location is indicated by the asterisk. A significant sex6region interaction was also detected, such that the difference
in density of ZENK expressing cells in the medial compared to lateral striatum was greater in males than females. Sample sizes are noted within the
bars.
doi:10.1371/journal.pone.0108841.g004
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that reverse song is different enough that it is not recognized as an

altered form of conspecific song, and does not activate cells within

NCM involved in error detection.

Untutored zebra finch song has also been used as a control

stimulus; it is produced by a zebra finch and thus has similar motif

structure to that of tutored song, but contains notes of unusual

frequency, duration, and inflection [12]. Untutored song induces

less ZENK expression than tutored zebra finch song in NCM and

CMM in both juveniles [43] and adults [55]. These results differ

from the current study in that aberrant song reduced ZENK

Figure 5. Density of ZENK expressing cells in Tn. Panels A and B depict representative samples of ZENK immunohsitochemical labeling in birds
exposed to rhythmic (A) or arrhythmic (B) song. Panel C depicts a thionin stained adjacent section; the box indicates where cells were counted. Panel
D shows the density of ZENK expressing cells between sexes and stimulus types (mean 6 standard error). A significant main effect of sex is indicted
by the asterisk. Sample sizes are noted within the bars.
doi:10.1371/journal.pone.0108841.g005

Table 1. Numbers of animals of each sex and stimulus condition exhibiting no or very modest labeling in two cortical song control
regions, LMAN and HVC.

LMAN HVC

Score* Rhythmic Arrhythmic Rhythmic Arrhythmic

Male 0 7 7 6 7

1 2 2 3 3

Total 9 9 9 8

Female 0 8 6 4 5

1 1 2 2 1

Total 9 8 6 6

*0 = no detectable ZENK expression; 1 = very light or sparse labeling; 2 = dark or dense labeling (no individuals were assigned this score).
doi:10.1371/journal.pone.0108841.t001
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expression rather than increasing it. Similar to the response to

reverse song, this pattern may be due to untutored song being too

dissimilar to normal song, or too inconsistent, to be detected as

normal song with errors. Collectively, the results also indicate that

response of auditory cortical neurons requires not just the overall

motif and bout structure, but the characteristics of individual notes

must be consistent with tutored zebra finch song.

While various auditory stimuli can induce different patterns of

ZENK expression in the songbird brain, it is unknown whether

these stimuli activate the same types of neurons. The phenotype of

ZENK expressing cells was not evaluated in this study. For

example, a substantial proportion of the cells in NCM are

GABAergic, and these inhibitory cells can influence auditory

perception [69]. Increased neural activity within NCM in response

to arrhythmic compared to rhythmic song may reflect inhibitory

processing rather than stimulation of a functional response. The

phenotype of the ZENK+ cells should be evaluated in future

studies.

It has been proposed that the auditory song template learned by

juvenile zebra finches is stored in NCM [50]. This hypothesis is

supported by the finding that in the template formation stage,

playback of tutor song induces neuronal activity within NCM and

CMM, but not other song system nuclei [70]. Song template

storage within NCM is consistent with the hypothesis that NCM is

involved in error detection because the site of template storage is a

logical location at which to compare the template and a song

example. Storage of the template within NCM would also allow

NCM neurons to assess other characteristics of song, in addition to

rhythm, that could influence perception of whether a sound is

conspecific song and the quality of that song.

In the present study, greater ZENK induction was seen in

females compared to males in CMM, specifically. Unlike in the

song control system [17], sex differences in morphology of

auditory structures have not been extensively described; the

borders of these brain regions are not particularly distinct, and

qualitatively the structure of the regions appears similar in males

and females. NCM and CMM are thought to be involved in

analysis of songs for purposes of mate selection in females [71].

CMM in particular is able to discriminate between directed and

undirected songs [72], which is necessary for evaluating potential

mate directed song quality. The increased neural activity in

response to song in CMM may therefore be due to CMM being

used by females for analysis of potential mates.

Tn
Compared to NCM and CMM, much less research has been

conducted regarding factors influencing neural activation and

ZENK expression in Tn. A previous study in our lab demonstrated

that ZENK expression in the Tn of females paired with males is

positively correlated with behaviors indicative of pair bonding,

including frequency of clumping with a mate as well as frequency

and duration of preening [73]. ZENK expression in Tn is also

Figure 6. Relative absence of ZENK expressing cells in LMAN and HVC. Panels A and B depict thionin stained sections, with arrows showing
borders of LMAN and HVC from a male exposed to arrhythmic song. Panels C and D depict adjacent sections with representative samples of
immunohistochemical labeling. LaM = lamina mesopallialis; V = ventricle.
doi:10.1371/journal.pone.0108841.g006
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positively correlated with the number of mount attempts in male

house sparrows [60]. In ring doves, ZENK expression in Tn in

pair bonded birds is greater than in un-bonded birds following a

preference test between a mate and a novel bird [74]. In addition,

the level of ZENK expression can be accurately used to predict

whether the bird is pair bonded [74]. The amygdala is part of a

network that controls social behavior, including sexual, parental,

and aggressive behavior, in a broad range of species [75,76]. It is

not known whether the birds in this study formed pair bonds prior

to being moved to single sex aviaries; if so, they were physically

separated from their mates at that point. One possibility is that the

increased activity in response to arrhythmic song may be part of

the process of evaluating the song as indicating a poor potential

partner. The phenotype of ZENK+ cells within Tn in the present

study is unknown. However, given the abundance of GABAergic

cells seen in the pigeon Tn [77], it is possible that arrhythmic song

causes an increase in activity of inhibitory cells, potentially

inhibiting selection of the singer for a mate.

An additional potential interpretation of the pattern of neural

activation in Tn is suggested by human fMRI and PET studies.

When participants were presented with a variety of non-speech

auditory stimuli, activity in the right basolateral amygdala was

positively correlated with ratings of unpleasantness of the auditory

stimuli [78]. Blood flow increased bilaterally in the lateral

amygdala in response to aversive sounds compared to white noise

[79]. Additionally, pleasurable music leading to participants

getting ‘‘chills’’ reduced blood flow in the amygdala bilaterally

[80]. Together these studies indicate that increased activity in the

amygdala is induced when auditory stimuli are perceived as

aversive. The increased activity in Tn may suggest that arrhythmic

song is perceived as aversive by zebra finches. This may be

combined with the social interpretation, in that a song perceived as

aversive may have greater salience for rejection of the singer as a

potential mate.

Striatum
In the striatum, an effect of region was detected, such that

ZENK labeling was less dense in the lateral (Area X in males)

compared to the medial striatum. Interestingly, this difference was

greater in males than in females. These results expand on previous

data from our lab in juvenile males in which conspecific and

heterospecific song, as well as tones, induced a significantly lower

density of ZENK labeled cells in Area X than in the medial

striatum [81]. In contrast, labeling was uniform throughout the

striatum in young females [81]. The current study found a

difference between lateral and medial striatum in females as well as

males indicating that differences in these areas in females may

develop as animals get closer to maturity. Together, these studies

suggest that the medial striatum is involved in processing of

auditory stimuli, but not in the aspect of rhythmic discrimination

assessed in this study. In addition, the low level of ZENK

expression in Area X in males has been suggested to indicate a role

for this brain region in song learning or production [81] rather

than auditory processing, in contrast to the conclusions from some

human data [66].

Methodological Considerations
HVC and LAMN. Little ZENK expression was seen in either

HVC or LMAN in any of the groups in the present study. While

intriguing, these results do not completely exclude the possibility of

neuronal activity in response to auditory stimuli in these two

regions. In fact, HVC exhibits specific electrophysiological

responses to a bird’s own song [58] and its tutor’s song [59],

with much lower responses to general conspecific song [59]. These

results are consistent with the present data which showed limited

ZENK expression in these regions in response to the songs of

unfamiliar zebra finches. In addition, one needs to consider that

analyses of ZENK protein and electrophysiology do not always

show the same pattern [54,68]. It has been proposed that

immediate early gene expression may be regulated differently in

several nuclei, including HVC and LMAN, than the rest of the

brain because ZENK is not expressed in these areas after

presentation of stimuli that induce electrophysiological responses

[40] or after treatment with a GABA antagonist [82]. Thus, while

this study does not suggest a role for these areas in rhythm

processing, the possibility cannot be rejected based on the present

data.

Stimuli. Sound levels in the intervals between syllables were

not identical between the rhythmic and arrhythmic stimuli.

However, these differences are highly unlikely to have affected

our results for several reasons. First, no significant correlations

were detected between ZENK labeling and the average intensity

of the intervals between syllables in either the rhythmic or

arrhythmic group for any of the regions that showed an effect of

stimulus type (all r,0.37, p.0.14). Second, the average power of

these intervals was less than 1.2% of that of the syllables for both

manipulations. Characteristics of these gaps between syllables

other than their duration are therefore probably far less salient

than the notes themselves. Third, the difference between the

power levels of the intervals in the two stimulus types as measured

in playback through the speakers is half of that in the pure stimuli

(which are depicted in Figure 1). Finally, the power of the intervals

was not consistently higher in either the rhythmic or arrhythmic

stimulus.

Potential Translational Implications
The zebra finch has been used previously as a model for

developmental stuttering. Delayed auditory feedback can induce

stuttering like syllable repetitions in zebra finches [83,84]

indicating the importance of normal auditory feedback for

accurate vocalization. Helekar et al. (2003) found that 7% of the

males in their colony naturally produce a stuttering-like song with

single syllable repetitions, and 53% of males tutored by these

repeaters also produce single syllable repetitions in their song [85].

Based on fMRI data, these birds that learn to repeat syllables have

decreased responses to tutor song and increased responses to

unfamiliar conspecific song in field L [86], the avian homolog of

the primary auditory cortex [15]. These results suggest some

dysfunction in the learning process, perhaps related to storage of

an auditory template. However, activity in NCM and CMM was

more variable across the syllable repeating and normal song

groups, thus significant differences could not be discerned [86].

Assessment of neural responses as stuttering-like song develops

would provide further understanding of specific neural mecha-

nisms.

Animal models for many of the other disorders that involve

deficits in rhythm and timing perception exist, but in these cases as

well the focus is on aspects of the disorders other than timing and

rhythm. For example, models of autism center around the

presence of social and stereotyped behaviors in rodents [87].

Rodent models of schizophrenia are widely varied with effects on

motor, cognitive and social behaviors [88]. A rat model of dyslexia

with specific neurological deficits has impairment in tasks of time

perception [89], but the rat as a model is restricted in its

applicability to communication disorders because this species does

not learn complex vocalizations. While valuable information is

collected from these models, songbirds offer advantages due to

specific similarities to humans. For example, they are vocal
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learners, undergoing critical periods of auditory and sensorimotor

learning to achieve highly stereotyped yet complex adult-like

songs. In addition, they rely on visual and auditory cues as

opposed to olfactory, and they form monogamous pair bonds.

Further study of the basis of rhythm perception and rhythm

deficits is needed in animal models in order to begin developing

new therapies that target the timing-based deficits observed in this

broad range of disorders.

In sum, zebra finches are an excellent potential model for

studying neural mechanisms underpinning human rhythm per-

ception and its relation to speech and language processing. This

avian species provides a model through which neurochemical

mechanisms of rhythm perception and dysfunction can be tested

to gain a deeper understanding of rhythm processing for

application to both healthy and disordered human development.

The present study has shown that NCM, CMM, and Tn increase

neural activity in response to arrhythmic song, indicating a role for

rhythm in auditory discrimination and social behavior such as

mate choice in the zebra finch. Further studies are needed to

understand the development and mechanisms underlying neural

responses to rhythm.
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