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Time judgments in global temporal contexts
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With three experiments, we examined the effects of global temporal context on time judgments as
gauged by constant errors (CEs) and estimates of a preferred period (P). In Experiment 1, participants
in seven different conditions listened to sequences of a given rate (with interonset intervals ranging
from 200 to 800 msec) and judged the relative duration of a final (comparison) time interval. No P
emerged. In Experiments 2 and 3, we embedded the same rates in different global (session) contexts
that varied according to (1) mean session rate, (2) standard deviation, (3) range, and (4) number of dif-
ferent rates in a session. Evidence from CEs indicated that P varied primarily as a function of mean ses-
sion rate and range of tempi. The best predictor of errors involved a measure termed relative range
(RR = range/mean session rate). A general algorithm incorporating RR successfully predicts P, and the

implications of this algorithm are discussed.

Recent research on short-interval timing suggests that
temporal context systematically affects the perceived du-
ration of an embedded time interval (Barnes & Jones,
2000; Drake & Botte, 1993; Jones & Yee, 1997; Large &
Jones, 1999; McAuley & Jones, 2003; McAuley & Kidd,
1998; Monahan & Hirsh, 1990). Figure 1 illustrates one
type of time-judgment task in which this occurs: A local
context sequence consists of a series of brief tones, which
mark out an isochronous sequence of interonset intervals
(IOIs), denoted as the base 101. This sequence precedes
a final pair of to-be-judged time intervals, referred to as
the standard and the comparison. In this paradigm, the
rate of the local context sequence can alter the perceived
duration of the standard IOI whenever the base 101 (i.e.,
sequence rate) differs from the standard IOI (Barnes &
Jones, 2000; McAuley & Jones, 2003). McAuley and
Jones suggested that constant errors in the perceived du-
ration of the standard IOI occur because the local context
sequence induces an internal periodicity that distorts par-
ticipants’ perception of the standard IOI in the direction
of the base IOI. In their framework, the perceived dura-
tion of a standard 101, obtained by measuring a point of
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subjective equality (PSE), estimates the current period of
an internal oscillator tracking the local context sequence.
However, Barnes and Jones found evidence that rates of
other sequences within a session also affected the per-
ceived duration of a standard IOI, hence the period of the
tracking oscillator. This suggests a role for global tem-
poral context.

The focus of this article is on the effects of global tem-
poral context on time judgments. The study reported here
had two aims. First, we aimed to assess how distribu-
tional properties of global temporal contexts affect pat-
terns of constant errors in time judgments. Second, we
sought to determine which effects of global distribu-
tional properties are mediated by the dynamic trial-to-
trial changes in local sequence rate. To address these is-
sues, we performed three time-judgment experiments,
adapting the paradigm outlined in Figure 1. A local con-
text sequence, consisting of three tones marking out a
single base 101, was followed by a standard IOI and then
a comparison I0I where the standard 101 always equaled
the base 10I. Across experiments, and in different multi-
rate sessions, global temporal context was manipulated
through distributional properties involving base 10lIs.
Constant errors (CEs) were measured by subtracting
each base 101 from an obtained PSE (CE = PSE — base
IOI); CEs were then compared across conditions (ses-
sions) to assess the impact of global context on time
judgments.

Classical Issues in Timing: Indifference Intervals

In the literature, patterns of constant errors in time
perception are well established. Historically, a general
finding has been that short standard intervals tend to pro-
duce positive CEs, whereas long ones tend to produce
negative CEs, with an indifference interval specified as
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Figure 1. Standard and comparison interonset intervals (IOIs) preceded by a local context sequence that marks out a constant base
IOI. The standard 101 was always equal to the base IOI. The interstimulus interval (ISI) was the time interval separating the onset of
the tone ending the standard IOI and the onset of the tone beginning the comparison IOI. Listeners judged whether the comparison

I0I was shorter, equal to, or longer than the standard 101.

an intermediate time interval that produces a null con-
stant error (Vierordt, 1868; Woodrow, 1934, 1951; Wood-
worth & Schlosberg, 1954). One issue concerns enormous
variability in the reported location of the indifference in-
terval; estimates range from a low of around 400 msec to
a high of 5.0 sec (Fraisse, 1978; Wallin, 1911a, 1911b;
Woodrow, 1951). Although some variability in indiffer-
ence interval estimates is attributable to the range of time
intervals involved (e.g., Jamieson & Petrusic, 1975; Wood-
row, 1951), it is not known what distributional properties
of global temporal contexts predict patterns of CEs and
whether the source of the CEs is perceptual, memorial, or
resides in decision processes (Allan, 1979). Moreover,
firm conclusions about the source of CEs and the indif-
ference interval are likely to be tied to a particular theo-
retical framework (Allan, 1977, 1979; Goldstone, Lha-
mon, & Boardman, 1957; Hellstrom, 1985; Helson, 1964;
Hollingsworth, 1910; Treisman, 1963; Turchioe, 1948).

Much of the classical research on the indifference in-
terval involves a theoretical framework that assumes an
interval model of time perception with three separate
stages: clock, memory, and decision stages (e.g., Gib-
bon, 1977; for a review, see Grondin, 2001). Applied to
indifference interval phenomena, this approach assumes
that CEs in timing reflect inadequate codes or memory
traces for the standard 101, the comparison 101, or both.
One assumption is that the indifference interval repre-
sents a duration code, which functions as a long-term in-
ternal referent for time judgments. From this perspec-
tive, both assimilation and contrast are considered aspects
of indifference interval phenomena; assimilation refers
to a perceptual distortion of an interval (e.g., a standard
101) toward this global referent interval (e.g., based on
some measure of central tendency), whereas contrast
refers to an opposing drift—namely, a distortion away
from the global referent interval (e.g., Hellstrom, 1985).

In contrast to an interval model interpretation, Fraisse
used the construct of a preferred internal periodicity to
explain indifference interval phenomena (Fraisse, 1963;
cf. Hirsh & Watson, 1996). In this framework, the con-
struct of a biologically preferred internal period (or tempo)
referred to a dominant rhythmic action (e.g., walking) that
displayed a period between 600 and 750 msec (Fraisse,
1963, 1978, 1984; see also Wallin, 1911a, 1911b). Early
estimates of the indifference interval seemed to provide

initial support for such links in that they often fell within
this range. Nevertheless, the possibility that session con-
text exerts a strong influence on this phenomenon pre-
sented a significant problem for any hypothesis of a bi-
ologically preferred periodicity that is unresponsive to
different stimulus time intervals. Although Fraisse ac-
knowledged this, he offered no solution to the dilemma
of how an indifference interval, on the basis of biologi-
cal periodicity, might shift—that is, adapt—in response
to changes in the rate of some external stimulus and the
context in which it occurs (Fraisse, 1963, p. 22).

Current Issues: Internal Periods and
Contextual Timing

Recent interest in entrainment timing models affords
a reexamination of problems associated with biological
periodicities. Entrainment models are not stage models.
Along with beat-based timing models, they have devel-
oped within a different tradition that is congenial to hy-
potheses about internal periodicities and that offer the
potential to explain the extrapolation of periodically
timed responses to sequences (Boltz, 1994; Drake, Jones,
& Baruch, 2000; Jones, 1976, 2004; Large & Jones,
1999; McAuley, 1995; McAuley & Jones, 2003; McAuley
& Kidd, 1998; Povel & Essens, 1985; Schulze, 1978; cf.
Keele, Nicoletti, Ivry, & Pokorny, 1989). Entrainment
models differ from beat-based timing models (e.g., Povel
& Essens, 1985; Schulze, 1978, 1989) in that the inter-
nal periodicities posited by entrainment models adapt to
changes in local rate, whereas those proposed by beat-
based models do not adapt. Entrainment models often
involve one or more internal periodicities that adjust
their phase and period in response to the timing of stim-
ulus onsets in sequences. Internal periodicities are for-
malized as self-sustaining (limit cycle) oscillators that,
within limits, selectively tune to and track changes in se-
quence rate. As such, they can supply a momentary in-
ternal standard for judgments about relative duration.
McAuley and Jones (2003) showed that although both
entrainment and beat-based models respond to sequences
of different (fixed) rates, entrainment models are more
successful in explaining time-judgment behavior, be-
cause they permit internal oscillators to adapt to various
changes in rate, including those that ensue from trial to
trial in a session.
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Experimental Paradigms and Their Implications

Although both classical and current approaches to
timing address context effects due to session properties,
they have relied on different experimental paradigms. A
common paradigm used to evaluate classical hypotheses
about the indifference interval is the two-interval para-
digm, which requires a response (e.g., shorter, longer) to
a comparison time interval relative to a single standard
IOI on each trial in a session. The two-interval paradigm
does not precede the standard—comparison pair with a
local context sequence. Instead, over trials the magni-
tude and presentation order of the standard and compar-
ison IOIs are varied. In addition to CEs, time distortions
due to session context have come to be assessed using a
time-order error (TOE) measure. A TOE is evident when
standard and comparison 1OIs are physically identical
but are consistently judged to differ in a given direction
(Hellstrom, 1985). TOEs, which are calculated in vari-
ous ways, can also index time distortions where the two
intervals involved are physically different by using an
asymmetry in the proportion of shorter and longer re-
sponses; in this case, the resulting values of TOEs de-
pend on both the presentation order of these intervals
(e.g., standard, comparison)! and their durations (Allan,
1979; Hellstrom, 1985; Michels & Helson, 1954). As
with CEs, short durations tend to produce positive TOEs,
whereas long durations tend to produce negative TOEs.2
In brief, using the two-interval paradigm, an indifference
interval can be estimated over trials as the hypothetical
standard time interval that produces a TOE of zero, given
some session (global) context.

A different paradigm, the sequence paradigm, pre-
cedes a standard—comparison pair with a local context
sequence on each trial in a session as suggested in Fig-
ure 1 (Barnes & Jones, 2000; McAuley & Jones, 2003;
McAuley & Kidd, 1998; Schulze, 1978; see Jones, 2004,
for areview). In this paradigm, which is used in the pres-
ent research, participants may be offered three judgment
responses (shorter, same, longer) to prevent strategies
based on listening only for departures from a local (se-
quence) rate. In this research, the local context sequence
is a necessary element, because the goal is to understand
how a larger session context affects participants’ re-
sponses to the rate of individual sequences. A PSE is
useful in estimating the response to a local rate because
it assesses the difference between an individual’s current
sense of a sequence rate and the objective rate (base 10I)
in the form of a CE. Thus, we assume that a PSE reflects
not only the influence of a local context on listeners’ per-
ception of sequence rate, but also the influence of the
prior global (session) context. In this respect, a PSE is
assumed to provide a valid estimate of a participant’s
perceived duration of a local rate at the moment of judg-
ment.3 In short, we rely on PSE, as well as CE, scores to
assess the role of various contextual factors in a listen-
er’s perception of local context rate.

A distinctive aspect of this paradigm relates to the ab-
sence of order reversals of the to-be-judged intervals—

for example, standard and comparison IOIs (i.e., as in
the two-interval paradigm). Although order reversals are
essential to calculating TOE, they do not make sense in
a study of context rate because the situation of interest
has a built-in asymmetry between the standard 101, which
is a sequence of specified rate, and the comparison 101,
which is often a single interval (see Barnes & Jones,
2000, and Jones, 2004, for details). Thus, such designs
do not lend themselves either to reversals or to TOE cal-
culations. Alternatively, CE and PSE scores offer a means
of evaluating context-sensitive responses to important
aspects of everyday auditory environments where time
intervals of speech and music commonly arrive embed-
ded within distinctive rates and rhythmic contexts. Con-
sequently, in this paradigm the assessment of global con-
text effects requires a different strategy, one that permits
a focus on sequence rate.

Such a strategy implies that we may rephrase ques-
tions about global context to ask: “Does a multirate ses-
sion instill in participants some overriding pace that sys-
tematically distorts their judgments about individual
sequence rates?” Hypotheses about sequence rate de-
scribe the internal referent in terms of a hypothetical
pace or an internal periodicity; here, we assume that if a
general sense of pace applies to an entire session, it must
somehow emerge from the collective local rates of con-
stituent sequences within that session. This is in contrast
to an interval model where the internal referent (i.e., cor-
responding to an indifference interval) is conceived as a
discrete interval elicited by constituent session time in-
tervals. Thus, an important implication is a theoretical
one concerning the internal representation of time: From
an interval model perspective, the indifference interval is
a memory trace of a single discrete interval, whereas
from an entrainment perspective a global context in-
duces one or more internal periodicities that contribute
to an overall sense of pace that may be expressed as a re-
verberating circuit or emergent internal period (e.g.,
McAuley & Jones, 2003).

Entrainment models suggest that over a series of trials
in multirate sessions, a listener’s judgments will be in-
creasingly influenced by one or several internal period-
icities assumed by entraining oscillators. However, cur-
rent entrainment models have not addressed global effects
concerned with a general sense of pace in sessions that
contain a variety of sequence rates (i.e., multirate ses-
sions). In this article, we investigate aspects of multirate
sessions that may predict a listener’s development of a
global pace, if one exists. This research is based on sev-
eral assumptions. First, we assume that for any local se-
quence rate, the best estimate of the period of an en-
training oscillator, as it responds to recurrences of that
sequence over trials, is given by the PSE for that base 101
(collapsed over trials). Second, we assume that in multi-
rate sessions, the best gross estimate of some global pace
is given by the internal periodicity that is assumed most
often by different oscillators activated over the course of
a session. We propose that this global pace can be esti-



mated from observed data by examining the pattern of
CEs over all base I10Is within a session; this estimate
yields a contextually determined preferred period (P).
Note that, although we assume that P is a biologically
based internal periodicity, as Fraisse suggested, it is not
fixed. Finally, we assume that because oscillators are
adaptive, P can be “pushed around” by local sequence
rates within a session context, and hence trial-to-trial
rate changes will be important. That is, hypotheses based
on adaptive oscillators have some potential for address-
ing unresolved issues concerned with effects of session
context on P. We return to the relationship between P and
the indifference interval, as classically described, in the
General Discussion section.

Plan of Experiments

In three time-judgment experiments, using the para-
digm of Figure 1, we manipulate statistical properties of
session context to assess their impact on CEs and P. On
each trial, a sequence of constant local rate (base IOI =
standard IOI) is followed by a comparison 10I.# To en-
sure that participants attend to both similarities and dif-
ferences between comparison and base I0Is, we used the
prospective time-judgment task employed by Barnes and
Jones (2000) in which participants judge a comparison
IOI using three response categories: shorter, same, or
longer. When a comparison differed from the base 101,
the difference exceeded threshold values (.04-.07) es-
tablished in time-discrimination tasks using sequences
of similar lengths and rates (e.g., Drake & Botte, 1993;
Halpern & Darwin, 1982; Jones & Yee 1997; Large &
Jones, 1999).

Experiment 1 was a baseline study; participants in dif-
ferent conditions encountered sequences of the same rate
(base 10I). Experiment 2 combined various base 1OIs
(local contexts) in a single session to create eight multi-
rate conditions that differed in distributional properties
(e.g., central tendency, heterogeneity of sessions). Ex-
periment 3 further investigated multirate contexts by or-
thogonally manipulating two session heterogeneity prop-
erties, n (the number of different base 101Is presented
within the session) and R (the range of the base IOIs). In
all experiments, the overall magnitude and direction of
errors was assessed using the average CE at each base
IOI. An estimate of P was then derived under the as-
sumption that the preferred oscillator period is one that
minimizes failures to adapt; thus, P is estimated as the
periodicity given by a CE of zero. We also assess overall
accuracy (proportion correct, or PC), as well as condi-
tional accuracy scores—that is, conditional on trial-to-
trial changes in local sequence rate.

EXPERIMENT 1
Single-Rate Baseline Study

The primary goal of Experiment 1 was to establish sta-
ble baseline performance levels for base 10Is of 200,
300, 400, 500, 600, 700, and 800 msec in single-rate ses-
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sions using the task shown in Figure 1. This design permits
a direct test of an absolute P hypothesis. If a fixed biolog-
ical predisposition for a particular sequence rate exists, a
determinate value of P should emerge in spite of the fact
that each of the n = 7 rates is presented to a different group
of listeners. For example, if P corresponds to an internal P
of 600 msec, a value given most often by proponents of this
view (e.g., Fraisse, 1963), CE scores obtained from differ-
ent groups of subjects, each exposed to a single repeated
base 10I, should nonetheless reveal systematic over- and
underestimates of the base 10I relative to 600 msec.

Method

Participants. A total of 113 students from an introductory psy-
chology class at Ohio State University participated in the experiment
for course credit. All reported normal hearing. They were randomly
assigned to one of seven base 10l conditions (200 msec, n = 18;
300 msec, n = 18; 400 msec, n = 16; 500 msec, n = 16; 600 msec,
n = 16; 700 msec, n = 15; 800 msec, n = 14). These numbers rep-
resent 96.6% of recruited individuals; data for the remainder were
excluded for either failure to comply with instructions (n = 2) or for
below-chance (p = .333) performance levels overall (n = 2).

Equipment and Stimulus Construction. All aspects of stimu-
lus generation and response collection were controlled by the Midilab
software package (Todd, Boltz, & Jones, 1989). Individual tone mark-
ers, each lasting 60 msec, were generated on an IBM-compatible
computer interfaced with a Roland MPU-401 Midi processing unit
that controlled a Yamaha TX81Z FM tone generator set to a sine
wave voice at 440 Hz. Tone sequences were transmitted to a sepa-
rate experimental room and amplified using a Rane HC-6 head-
phone console. Each participant listened to stimuli over AKG-K270
headphones at a comfortable listening level (adjusted to levels be-
tween 60 and 70 dB SPL according to individual preference).

Design. Experiment 1 implemented a single-factor between-
subjects design. The participants were randomly assigned to one of
seven base 101 conditions (200, 300, 400, 500, 600, 700, or 800 msec)
and asked to judge the duration of a comparison IOl relative to the
base IOl over the course of a single experimental session. For each
base 101, there were five possible comparison 10Is (24% shorter,
12% shorter, equal to the base 101, 12% longer, and 24% longer).

Procedure. Each trial was initiated by a 500-msec high-pitched
(5274-Hz) warning sound, followed by a 500-msec silent interval
prior to the onset of the first context tone. On each trial, an isochro-
nous four-tone context sequence (three base 101s) was followed by
a comparison IOI. The time interval between the onset of the tone
terminating the base 101 sequence and that of the first tone of the
comparison IOl was always equal to twice the base IOI. The same
base I0I occurred on all trials. During a 2.5-sec response interval,
the participants judged the duration of a comparison IOl relative to
the base 101 by pressing one of three buttons (on a response box)
labeled shorter, same, or longer. They were told to respond quickly
and accurately and to guess if unsure. In each of the seven base 101
conditions, a session consisted of a series of 12 practice trials with
corrective feedback, followed by five blocks of 36 test trials, with-
out feedback. There were an equal number of shorter, equal, and
longer comparisons included in each block. Over the 180 trials, 60
comparison intervals were equal to the base 10I; each of the four
comparisons that differed from the base IOl occurred 30 times. Test
trials were presented in one of three different random orders. Short
rest breaks occurred between blocks; a longer break (ca. 5 min) oc-
curred midway through the approximately 90-min session. Finally,
listeners completed a musical background questionnaire (e.g., years
of musical training, etc.).

Data analysis. Data were analyzed in terms of the probability of
a time-judgment error, using proportion of correct responses (PC),
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and in terms of the sign and magnitude of these errors, using CE
scores. The former was measured by combining the five compari-
son [OIs (two shorter [12%, 24%], two longer[12%, 24%], and one
same) and then determining the overall proportion of correct re-
sponses. The latter was estimated for each base 101 using the for-
mulation: CE = PSE — base IOI.

With respect to the measurement of PSE, various proposals dif-
fer, depending on task (Gescheider, 1997; Hellstrom, 1979; Treis-
man, 1963). Conventionally, the PSE in a two-response task is de-
fined as the stimulus continuum value (base IOI) in a psychometric
function where P(short) = P(long) = .50. For the three-choice
(shorter, same, longer) task, Greenberg (1965, pp. 111-112) de-
scribed three methods, yielding similar results. The first effectively
reduces the three-choice task to a two-choice task by assigning the
same responses to the shorter and longer categories in equal pro-
portions. The second method is to allocate the same responses to
the shorter and longer categories in proportion to the observed
P(short) and P(long). The third method is a modification of Thur-
stone’s law of comparative judgment (Thurstone, 1927), which pro-
duces a result somewhere in between the first two methods.

The method we used to estimate PSE for the three-choice task is
similar, but not identical, to Greenberg’s (1965) third method (a
modified Thurstone model). Although our method is somewhat un-
conventional, the results using it and the corresponding Greenberg
method were highly correlated (» = .97) and in some cases our
method provided a slightly better fit to the data (see the Appendix,
Table Al, for comparative fits). We refer to this as a difference
method .3 First, we determined [P(short) — P(long)] for each of the
five comparison 1OIs (including the same comparison) and defined
PSE as the base 101 value that produced P(short) — P(long) = 0.
To estimate PSE, we linearly rescaled the difference scores for each
comparison so that they were bounded between 0 and 1, rather than
between —1 and 1. The resulting psychometric curves approxi-
mated a cumulative normal distribution (see the Appendix for ex-
emplar psychometric functions). Transforming the resulting values
to z coordinates yielded linear psychometric functions, validating
normality assumptions (Gescheider, 1997). A regression line was
then fit through the transformed points, and PSE was given by the
intersection of the line with the abscissa (z = 0); see Macmillan and
Creelman (1991, pp. 219-220) for a description of the z transform
method for estimating PSE. On the basis of average PSE in each
condition, we estimated P by regressing the constant error (CE =

PSE — base I0I) over the continuum of base IOI values and then
determining the time interval that produced CE = 0.

Results and Discussion

Figure 2 shows mean CE with 95% confidence inter-
vals for each of the seven base 101 conditions. Individ-
ual subject estimates of CE were mainly small and posi-
tive, indicating high accuracy with a tendency to produce
more shorter than longer responses. On average, CE val-
ues ranged from a low of 0.6 msec (700-msec base I0I)
to a high of 8.3 msec (300-msec base I0I). Overall, the
CE data did not reveal a pattern of over- and underesti-
mation errors suggestive of a P (i.e., positive CEs at
short base 101Is and negative CEs at long base IOIs). This
was confirmed by a one-way between-subjects analysis
of variance (ANOVA) on CE, which showed no signifi-
cant effect of base IOI [F(6,106) = 0.91, MS, = 151.27,
p = .49] and a regression analysis of CE and base 10I,
which produced a nonsignificant » squared value of .28.
The corresponding one-way between-subjects ANOVA
on PC also showed no significant effect of base 101
[F(6,106) = 1.92, MS, = 0.006, p = .083].6 Collapsed
over base 10I, mean PC was 0.82 = 0.01. In summary,
the results of Experiment 1 yield little support for the
concept of an absolute P.

EXPERIMENT 2
Multiple-Rate Context Study

In Experiment 1, participants experienced the same
base IOI on all trials in a session, and we found little ev-
idence for an absolute P, independent of global context.
However, local and global (session) rates in Experiment 1
were identical in the seven base 101 conditions. Conse-
quently, although Experiment 1 provides useful baseline
data, it tells us little about global contextual determi-
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Figure 2. Constant error scores (averaged over participants) as a function of base 10I in
Experiment 1. The solid line shows the regression line used to estimate the location of P (see
text). Bars represent 95% confidence intervals.



nants of a P. In Experiments 2 and 3, we pursue this issue
by decoupling local and global context by using multi-
rate session contexts.

In Experiment 2, the same seven base 101s of Experi-
ment 1 were combined to form the eight multirate global
(session) contexts shown in Table 1. The conditions dif-
fered with respect to the base 1OIs included in each ses-
sion (column 2). Two questions can be addressed with
these manipulations. First, does a P emerge when the
base IOl varies from trial to trial within a session, rather
than remaining constant (as in Experiment 1)? Second,
if a P does emerge, what global statistical properties of a
session predict it? To these ends, Table 1 summarizes a
number of important session properties of the set of n
base 10Is for each condition (columns 3—7). These in-
clude measures of central tendency (arithmetic and geo-
metric means) and heterogeneity (i.e., n, SD, R), where
R, range, refers to the difference between the slowest
(largest base 10I) and fastest (smallest base 10I) se-
quence in a session.

In terms of central tendency, if a P is due to an aver-
aging process, this may involve either the arithmetic or
geometric session mean of the n equiprobable base 10Is.
As Table 1 indicates, the arithmetic mean in this design
assumed only two values (I0Is of 400 or 600 msec); this
variable, termed set, identified whether the mean base
I0OI conveyed, overall, a fast (F = 400 msec) or slow
(S = 600 msec) global rate. By contrast, the geometric
means (column 4 of Table 1; hereafter distinguished as
GM) differed for each of the eight conditions. Thus, if P
is determined by the arithmetic mean, set (F, S) should
predict its value. As a check on statistical averaging, half
of these conditions contained a reinforcing base 10—
that is, an IOI that was identical to the arithmetic mean
rate—and half did not. If the arithmetic mean correctly
describes the averaging process, it will be the better pre-
dictor of P, regardless of whether or not the mean base
101 actually occurs as a reinforcing local rate within the
session. Finally, if P is determined by the GM, the eight
individual geometric means will better predict P esti-
mates than will the arithmetic mean. Hereafter, the term
mean is synonymous with arithmetic mean.
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We know little about the role of session heterogeneity.
Speculation in the classical time-judgment literature as-
sociated with the indifference interval suggests that rel-
evant heterogeneity measures may involve an uncer-
tainty measure based on the number of different rates, n,
the standard deviation of rates, SD, and/or the range of
rates, R (Hellstrom, 1985; Jamieson & Petrusic, 1975;
Woodrow, 1951). These statistics describe different dis-
tributional properties of base 1OIs of the four conditions
within each set (see Table 1). Within each set, a condi-
tion can be uniquely identified by n (2 = n =< 5) when
taken together with set type (F or S): F2, F3, F4, F5, and
S2,S3, S4, S5. On the one hand, manipulations of n, SD,
and R may have little effect on estimates of P if central
tendency dominates time judgments. On the other hand,
one of these statistics may affect either estimates of P or
the reliability of these estimates. For instance, as session
heterogeneity of local rates increases (due to larger n,
SD, or R), overall accuracy may decline and/or estimates
of a P (due to CE scores) may be more variable. To gain
a more complete picture, we supplement estimates of P
in three ways by assessing how different heterogeneity
measures affect (1) overall error rates, inversely related
to PC, (2) conditional accuracy as a function of trial-to-
trial changes in base 101, and (3) accuracy levels within
one diagnostic rate condition (the base 10l of 500 msec)
that occurred in all of the eight context conditions of Ex-
periment 2.

Method

Participants. A total of 83 students from an introductory psy-
chology class at Ohio State University (all with normal hearing)
participated for course credit. This subject number reflects 94.3%
of the individuals recruited; data for the remainder were excluded
for either failure to comply with instructions (n = 1) or for below-
chance (p = .33) performance levels overall (n = 4).

Equipment and stimulus construction. The equipment and
stimulus construction were identical to those in Experiment 1.

Design. We employed a 4 X 2 mixed-factorial design. Four mul-
tiple rate conditions (n = 2, 3, 4, 5) were crossed with two mean
rates (F, S) to generate eight between-subjects context conditions,
as shown in Table 1. Half the contexts resulted in a mean session
rate of 400 msec (F), and half realized a mean session rate of 600 msec
(S). Half the conditions contained a base 101 at a rate equivalent to

Table 1
Global Distributional Properties of the Eight Session Context
Conditions Constructed for Experiment 2

Central Tendency Heterogeneity

Context Base 10Is (msec) Arithmetic Mean ~ Geometric Mean »n  SD R
F5 200, 300, 400, 500, 600 400 372.8 5 158 400
F4 200, 300, 500, 600 400 366.3 4 183 400
F3 300, 400, 500 400 391.5 3 100 200
F2 300, 500 400 387.3 2 144 200
S5 400, 500, 600, 700, 800 600 582.7 5 158 400
S4 400, 500, 700, 800 600 578.5 4 183 400
S3 500, 600, 700 600 594.4 3 100 200
S2 500, 700 600 591.6 2 144 200

Note—Bold font indicates the conditions that included the arithmetic mean as one of the base

10Is.
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mean session rate (i.e., F3, F5; S3, S5), and half did not (F2, F4; S2,
S4; see column 4, Table 1). The number of participants in each con-
text condition was F2,n = 10; F3,n = 11; F4,n = 11;F5,n = 9;
S2,n=10;S3,n=11;S4,n=10;S5,n = 11. As in Experiment 1,
there were five possible comparison 10Is for each base 101 (24%
shorter, 12% shorter, equal to the base 101, 12% longer, and 24%
longer).

Procedure. The procedure was identical to that of Experiment 1
with the exception that base 0] varied randomly from trial to trial.
We equated the number of shorter, same, and longer comparisons
across the n base IOIs in each condition, across conditions (using
12 to 18 practice trials and from 120 to 300 test trials, depending
on n), and within blocks (see below). As in Experiment 1, test tri-
als were presented in five blocks with an equal number of shorter,
equal, and longer comparisons included in each block. In test trials,
in all conditions, each base IOl always occurred 60 times. Thus, the
number of trials in each of the five blocks necessarily differed with
n; trials per block were 24, 36, 48, and 60, forn = 2, 3,4, and 5 con-
ditions, respectively. Finally, the total number of test trials was 120,
180, 240, and 300, for n = 2, 3, 4, and 5 conditions, respectively.
The total length of a session varied from 45 to 120 min.

Results

The results are presented in four sections. First, we ex-
amine the sign/magnitude of CE scores for each base 101
to obtain estimates of P for each condition; here, the con-
tribution of central tendency to estimates of P is as-
sessed. Second, we examine overall accuracy across
conditions, using PC; here, the contribution of session het-
erogeneity is assessed. Third, we examine conditional
(trial-to-trial) accuracy and consider its impact on CEs
and PC. Finally, to confirm global context effects on re-
sponses to local rate, we analyze a single, diagnostic,
rate condition (the 500-msec base 10I); by holding this
rate constant, we can assess responses to it that result in
different session contexts.

Constant errors and central tendency measures.
Figure 3 summarizes CE data for the eight context con-
ditions of Experiment 2. The 28 CE scores of Figure 3
were averaged over participants and plotted against base
IOI. We note that individual CE scores depend on a fixed
temporal order in which a sequence base 101 is always
followed by one of five comparison IOIs. Nevertheless,
these observed CE scores correlate highly (» = .84) with
a related measure that precludes temporal order rever-
sals—namely, responses to a comparison IOl that is iden-
tical to the standard [P(short/same) — P(long|same); p <
.01, two-tailed].”

In general, the pattern of CEs, shown in Figure 3, sug-
gests the presence of a P: CEs were positive for sequence
rates that were faster than the mean session rate and neg-
ative for rates that were slower than the mean session
rate. In addition, the absolute magnitude of CEs ap-
peared to be greater for sequence rates more remote from
the session mean than for those close to the mean. Con-
sistent with these observations, the CE data in Figure 3
were best described by two separate regression lines: one
for fast sets (R? = .72) and one for slow sets (R? = .67).
These lines identify, respectively, two preferred period
values (P = 426 msec for fast sets, and P = 615 msec for

slow sets). Both estimates are relatively close to the re-
spective mean of each set. This is in sharp contrast to the
findings of Experiment 1, where P was indeterminate
(R2 = .28).

Next, we consider which central tendency measure,
the arithmetic or the geometric mean, provides a better
estimate of the location of P for each of the conditions.
We estimated P separately for session contexts with
n > 2 (i.e., conditions with sufficient points for a re-
gression analysis). The resulting P values appear in
Table 2. The arithmetic mean of base 1OIs is constant
within each set (either 400 or 600 msec), but the esti-
mates of P are not. However, the observed variation of P
is not explained by the GM (Table 1). The root mean-
squared error of approximation (RMSEA) between P es-
timates and the arithmetic mean of F and S sets was ap-
proximately 53 msec, whereas the corresponding RMSEA
involving the different values of the GM was greater
(i.e., 65 msec in both F and S sets).

Aside from obvious nonsystematic factors, such as in-
dividual differences, the variation of P estimates raise
questions about the role of additional variables that dif-
ferentiate the four context conditions within each set.
One candidate is the base 10Ol that reinforces the mean
IOI of the session. For example, condition F5 has a ses-
sion mean of 400 msec and also contains a sequence with
a reinforcing base 10I of 400 msec. In general, condi-
tions with a reinforcing base 101 (F5, F3, S5, S3) had
smaller RMSEA values between P estimates and mean
session rate (47 msec) than did those (F4, F2, S4, S2)
that lacked one (68 msec). This suggests an influence of
a reinforcing local rate on P, and it implies that simple
statistical averaging does not uniquely determine P.

Other factors may also contribute to CEs and hence to
variability of P estimates. A major one is session hetero-
geneity, which distinguishes the conditions within each
set. The data of Table 2 do not rule in or out a specific
heterogeneity measure (n, SD, or R). In the next section,
we consider whether context heterogeneity affects the
likelihood of errors by assessing overall accuracy. The
rationale for this analysis is based on two observations:
(1) P estimates depend upon regression of scores indi-
cating average error magnitude (CE values) over an or-
dered set of base 1OIs; and (2) overall accuracy, indexed
by PC, reflects error frequency, which turns out to be re-
lated to the variability in P estimates by virtue of its cor-
relation with absolute CE scores (r = —.41, p < .05).

In sum, analyses of CEs revealed two different Ps for
fast and slow sets that approximated the session mean,
respectively. Within each set, part of the variation in P
estimates appeared to be related to the presence or ab-
sence of a base 10l that reinforced the session mean.

Accuracy and session heterogeneity. Figure 4 shows
mean PC for each base 10l within each context condi-
tion. Data are grouped across the four panels (A-D) of
Figure 4 according to set (F, S) and R (narrow, wide);
within each panel, conditions differ as a function of n
and base IOI. Error bars represent 95% confidence in-
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tervals. Also shown (solid line) are the corresponding
means from Experiment 1. In general, overall accuracy
is lower in Experiment 2 than in Experiment 1. Global
context effects due to multiple versus single rates in a
session are most evident in PC scores for specific indi-
vidual rate conditions of Experiment 2 versus Experi-
ment 1. For instance, the PC scores are often lower for
the same base 10Is in Experiment 2 than in Experiment 1.
Over the eight Experiment 2 conditions, both the mean

Table 2
Observed Location of P for All Session Context
Conditions in Experiments 2 and 3

Context
Condition P’ (msec) P (msec) Slope R?
Experiment 2
F5 416 390 —0.13 .88
F4 416 480 —0.06 .82
F3 433 436 —0.14 .99
F2 433 n.a. n.a. n.a.
Ss 624 620 —0.16 .87
S4 624 546 0.11 .90
S3 649 686 —0.03 .99
S2 649 n.a. n.a. n.a.
Experiment 3
F5-WR 416 390 —0.13 .88
F5-NR 433 498 —0.11 .94
F3-WR 416 398 —0.13 .99
F3-NR 433 436 —0.14 .99
S5-WR 624 620 —0.16 .87
S5-NR 649 612 —0.20 .87
S3-WR 624 553 —0.16 .94
S3-NR 649 686 —0.03 .99

Note—P’, predicted estimate; P, observed estimate; WR, wide range;
NR, narrow range. Bold font indicates overlapping conditions in Ex-
periments 2 and 3. No estimates were reported for F2 and S2 because
the calculation of P involved only two points.

rate (fast vs. slow) and session heterogeneity contribute
to PC differences. A 4 X 2 ANOVA on overall PC scores
showed a significant main effect of n [F(3,75) = 8.23,
MS, = 0.007, p < .01] and a significant main effect of
mean rate [F(1,75) = 11.61, MS, = 0.007, p < .01].

Although this omnibus analysis indicates that session
heterogeneity affects error probabilities, it does not iden-
tify which of the three heterogeneity measures best pre-
dicts PC. Because n, SD, and R generate different pre-
dictions about the rank order of the four conditions within
each set (see Table 1), we used planned comparisons to
test these orderings, under the assumption that greater
heterogeneity implies lower PC values (Kirk, 1995). Of
these measures, SD was the worst predictor. This mea-
sure predicted the order (from highest to lowest PC): 3 >
2 > 5 > 4 (in terms of n). This was not found. In fact,
the range (R) was the best predictor of the observed or-
dering, which was: 2 = 3 > 4 = 5. Within each set, those
conditions with equivalent R values did not differ in
mean PC (all ps > .05); PC was higher in the narrow
range (n = 2, 3) than in the wide range (n = 4, 5) condi-
tions in both fast sets [F(1,39) = 9.79, MS, = 0.01,p <
.01] and slow sets [F(1,40) = 11.92, MS, = 0.005, p <
.01]. Taken together, such findings are not consistent
with predictions based on either SD or n. Although SD is
unsatisfactory, we cannot fully discount uncertainty as a
factor, because R and »n covary. However, we can con-
clude that R appears to play the most important role in
determining error rates, because these are reflected by
PC values.

Because session mean rate also appeared to affect
overall PC (lower PCs were found in fast sets than in
slow sets), we combined mean rate and R to form a more
economical predictor of PC termed relative range (RR).
RR is calculated by dividing the range of rates for each
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session by mean session rate. In Experiment 2, this yielded
four RR values ranging from a minimum RR of 0.33
(narrow range, slow rate) to a maximum RR of 1.00
(wide range, fast rate). A one-way ANOVA on PC with
the four levels of RR shows a significant main effect of
RR [F(3,79) = 10.68, MS, = 0.007, p < .01]. Accuracy
over the eight context conditions rank orders extremely
well with RR values: People are most accurate when
RR = 0.33 (M = 0.78), next most accurate when RR =
0.5 (M = 0.73) and 0.67 (M = 0.71), and least accurate
when RR = 1.0 (M = 0.64).

Conditional accuracy and trial-to-trial changes in
rate. Why does R, and especially RR, successfully pre-
dict accuracy/error rates? One possible reason is that RR
reflects the largest change in sequence rate that can occur
between adjacent trials in a session. Such changes may
be highly disruptive if listeners become accustomed to a
certain “average pace” over several trials and are then
forced to adapt to an extreme departure from this pace.
To assess this, we determined PC in the context of dif-
ferent trial-to-trial rate changes in each session. We let
PC,, represent the probability of a correct response on
trial n. We hypothesized that, on average, more errors
would occur after large than after small changes in base
IOl from trial n — 1 to trial #, hence PC,, should be lower
on these trials.

The rate change hypothesis is evaluated by modifying
the RR metric to accommodate trial-to-trial rate changes.
We defined a rate change metric (RC) as RC = (]local
rate change|) / mean session rate, where absolute local
rate change values were 0, 100, 200, 300, and 400 msec.
Figure 5A shows PC,, regressed against the RC values in
Experiment 2. As predicted, accuracy on a given trial,
PC,, is inversely related to the relative size of the RC
(r = —.62), from trial n — 1 to trial n. Alone, the RC
metric explains a significant proportion (.38) of the vari-
ance in PC, [F(1,28) = 17.16, MS, = 0.014, p < .01].

The preceding analysis suggests that the global met-
ric, RR, predicts overall accuracy in part because it capi-
talizes on detrimental effects of large trial-to-trial changes
in local rate. However, RR and RC are necessarily cor-
related (» = .41). Therefore, the most revealing analyses
with respect to the rate change hypothesis are those that
examine the impact of local rate changes from an imme-
diately preceding trial when session range (hence RR) is
held constant. We assessed RC separately for each of the
two wide range context conditions (R = 400 msec) that
include the most extreme local rates (insufficient points
exist in narrow range conditions). In the fast-wide range
condition (RR = 1.00), RC and PC, yielded a correla-
tion of —.66; these data are shown in Figure 5B (for
comparison with data in Figure 5SA where RR varies). We
also found a significant correlation between RC and PC,
in the slow—wide range condition (RR = .67): r = —.50.
Thus, in sessions containing the most extreme base 10ls,
25% to 44% of the variance in errors on a given trial is
explained strictly by changes in local rates from the im-
mediately preceding trial. When we combined RR with
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rate change metric (RC) for (A) all conditions of Experiment 2
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RC in a step-wise regression to predict PC, and included
other heterogeneity predictors (n, SD) for comparative
purposes, only RR and RC contributed significantly to
the predictability of PC,, [F(1,28) = 57.89, MS, = .037,
p <.01,and F(2,27) = 44.26, MS, = .032, p < .01]; to-
gether, RR and RC accounted for 76.7% of the variance
in PC,,.

In sum, analyses of conditional accuracy allow us to
conclude: (1) trial-to-trial changes in base 10l (local
rate) significantly affect PC,, with the largest absolute
changes in local rate corresponding to the most errors
(lowest PC,) on a given trial; and (2) effects of RR re-
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ported in the analyses of overall accuracy are partially,
but not entirely, due to having large trial-to-trial rate
changes in session contexts with large relative ranges.

Diagnostic 500-msec base 101 condition. Finally,
we examined performance for the 500-msec base 101
only because this sequence rate appeared in all eight
context conditions. These analyses permit us to confirm
our conclusions that session contexts indeed do distort
the time perception of a given rate. Previous analyses in-
cluded all base IOlIs; thus, heterogeneity effects may
have resulted from inclusion of a particular base 101 in
the analysis.

First, we focused upon CE scores for this condition. A
2 X 4 ANOVA, with set and » as factors, indicated only
a significant main effect of set [fast vs. slow; F(1,79) =
17.12, MS, = 403.4, p < .01] but no other main effects
or interactions. As expected, mean CE scores were neg-
ative (M = —4.9 msec) in fast contexts where the 500-
msec rate was slow, relative to the session mean and posi-
tive (M = 12.9 msec) in slow contexts where the 500-msec
rate was fast, relative to the session mean. Next, we as-
sessed error rates in this condition by performing a one-
way ANOVA on PC scores using RR as the single factor.
As anticipated, we found a significant effect of RR
[F(3,79) = 8.20, MS, = 0.009, p < .01]; the lowest PC
occurred for RR = 1.0 (M = 0.67) and the highest for
RR = 0.33 (M = 0.81), with intermediate PC values for
RR values of 0.5 (M = 0.76) and 0.67 (M = 0.72).

Finally, we also confirmed general findings involving
PC,, for this diagnostic condition. For the 500-msec base
101 condition, the separate correlations between RR and
RC with PC,, respectively, were r = —.75 and r = —.62
(ps < .01). Negative r values confirm the hypothesis
that larger trial-to-trial changes in local rate are more
detrimental than smaller ones. A step-wise regression
with RC and global predictors n, SD, and RR indicated
that, as before, only two predictors were significant: RR
and RC [F(1,26) = 34.39, MS, = 0.039, p < .01, and
F(2,25) = 29.49, MS, = 0.034, p < .01, respectively].
The RR metric accounted for 56.9% of the total vari-
ance, with RC contributing an additional 13.3%; the
total variance accounted for was 70.2%.

In sum, all of the contextual effects evident when ses-
sion context was evaluated by including all base I1OIs are
also found when we consider only performance for the
single 500-msec base 101 that appeared in every session
context condition. Thus, the context effects we report do
not appear to be due to differences in the base I0Is com-
prising the different context conditions, but rather illus-
trate systematic distortions in how people perceive a par-
ticular sequence rate.

Discussion

Overall, Experiment 2 shows that multirate sessions
instill in listeners a sense of overall pace, or preferred
periodicity (P) that affects time-judgment accuracy. Ev-
idence for P is based upon the distinct pattern of errors
that emerged for each session context. With regard to

gross contextual determinants of P, two major candidates
emerge: (1) The mean of base I0Is within a multirate
session predicts the location of P reasonably well; CEs
for sequence rates slower and faster than P tend to be
positive and negative, respectively. (2) The session range
of local rates—namely, the RR—predicts error rates, as
indexed by PC, and has the potential to explain some of
the variability in P estimates. In this section, we develop
a simple algorithm for predicting P that is based on these
properties.

We begin by proposing that the CE for a given base
101 in a particular session context can be predicted using
a slightly modified RR metric. Because CE for a given
base 10l is signed, we transform RR into a directional
relative range metric (ARR) by multiplying it by d (the
signed deviation score of a base IOI from the session
mean). This new predictor variable (dRR) incorporates
direction, session heterogeneity, and a session’s mean
rate. Information from d is associated with the value of
a given error (magnitude, sign), whereas the information
from RR is associated with the likelihood of such an
error within a session context. This metric can be used to
predict the location of P for all eight Experiment 2 con-
ditions combined. Figure 6 summarizes CE scores as a
function of dRR; open circles (O) represent Experi-
ment 2 data, and X denotes Experiment 3 data. For Ex-
periment 2, dRR accounts for 64.9% of the variance in
these data [F(1,26) = 48.2, MS, = 10.26, p < . 001].

A general formula for predicting the location of P as
a function of global session context derives from solving
the obtained regression equation for the (signed) value of
dRR—namely, dRR —that yields CE = 0. For any ses-
sion context, the predicted location of P—namely, P’—
is given by:

P’ = dRR/RR + mean session 101, (1)

where we assume that dRR is a constant that can assume
positive or negative values. Thus, Equation 1 indicates
that P’ is inversely related to RR; it predicts that as the
relative range of a session increases, P’ gravitates to the
session mean (i.e., in the limit dRR /RR — 0). Table 2
shows the predicted (P’) and observed (P) estimates of
the preferred period, assuming that dRR is under +16.3.
Over six of the eight conditions (excluding n = 2), the
mean absolute difference between predicted (Equa-
tion 1) and observed (Table 2) values is 34 msec (under
10% of the mean base 101).

Equation 1 provides a global predictor of average ses-
sion PSE, based on gross statistical properties of a ses-
sion. Because of this, it does not explicitly incorporate
two important factors that undoubtedly play a role in its
efficacy. One factor involves the likelihood of a condi-
tion containing a reinforcer rate. For example, the 34-
msec difference between P and P is reduced to 17.5 msec
in sessions that contain a local sequence rate that rein-
forces the global mean rate. A second factor involves
moment-to-moment changes in local rate as gauged by
RC (cf. Figure 5). Equation 1 only indirectly incorpo-
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3. Separate regression lines are shown for Experiments 2 and 3 data.

rates this fine-grained session information; for instance,
RC enters the picture through its links to the global met-
ric (RR). However, it is possible to assign a more explicit
role for one or both of these factors by assuming that
they affect the value of dRR,. Thus, dRR, may take a
smaller value when a reinforcing rate is present than
when one is absent. The potential import of such factors
instills a cautionary note: A singular emphasis on gross
statistics and global determinants of P can mask impor-
tant local and moment-to-moment influences on the un-
derlying process.

In summary, the most economical global predictor of
CEs in time judgments in extended temporal contexts
combines RR with a deviation score based on individual
base IOIs to form a predictor variable (dARR). The devel-
opment of the dRR metric leads to a general algorithm
that relies on global (not local) distributional properties,
such as session mean and range, to predict the location
of P

EXPERIMENT 3
Range and Uncertainty

Experiment 2 data indicate that a metric based on RR
accurately predicts effects of global context on CEs, and
an algorithm based on this metric predicts the location of
P. All of this implies that the range of a session is an im-
portant determinant of the preferred period. However,
range and uncertainty were partially correlated in Ex-
periment 2. One aim of Experiment 3 was to tease apart
the effects of R and n. The second aim was to provide an
evaluation of the proposed algorithm, Equation 1.

Experiment 3 introduces new conditions that yield an
orthogonal manipulation of R and » when supplemented
with certain conditions from Experiment 2. We use the

same mean session rates of 400 msec (Experiment 3A)
and 600 msec (Experiment 3B) as in Experiment 2. How-
ever, design constraints in Experiment 3 necessitated a
denser distribution of local rates within two of the new
conditions to achieve the requisite combination of nar-
row range and large n. Finally, unlike Experiment 2, in
Experiment 3 all session contexts contain a reinforcer
rate—that is, a base IOl that matches the mean 101 of the
session.

Method

Participants. A total of 47 students from an introductory psy-
chology class at Ohio State University volunteered for Experi-
ments 3A (n = 25) and 3B (n = 22). These numbers constitute 92%
of the individuals recruited; data for the remainder were excluded
due to failures to comply with instructions, extremely poor accu-
racy levels, or equipment failure.

Equipment and stimulus construction. Equipment and stim-
ulus construction were identical to those for Experiments 1 and 2.

Design. Mean session rate was either fast (F, 400 msec; Experi-
ment 3A) or slow (S, 600 msec; Experiment 3B). The common de-
sign for Experiments 3A and 3B included relevant conditions from
Experiment 2; it was a2 X 2 X 2 mixed factorial design. The between-
subjects variables were mean rate (400 msec, 600 msec), n (3, 5),
and range (200 msec, 400 msec). Statistical properties of the eight
context conditions used in Experiment 3 are summarized in Table 3;
note that in Experiment 3, a/l conditions contain a reinforcer rate.

Procedure. The procedure was identical to that of Experiments
1 and 2.

Results and Discussion

The findings of Experiment 3 parallel those of Exper-
iment 2. When we decouple the heterogeneity measures,
R and n, we find that range is the primary factor that de-
termines performance. This is evident in analyses of ab-
solute CE scores from Experiment 3 where an ANOVA
showed a significant main effect of R [narrow vs. wide;
F(1,81) = 12.83, MS, = 200.3, p < .01], but no effect of
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Table 3
Global Distributional Properties of the Eight Session Context
Conditions Constructed for Experiment 3

Central Tendency Heterogeneity

Context Base I0Is (msec) Arithmetic Mean Geometric Mean n SD R

F5-WR 200, 300, 400, 500, 600 400 372.8 5 158 400
F5-NR 300, 350, 400, 450, 500 400 393.6 5 50 200
F3-WR 200, 400, 600 400 363.4 3 200 400
F3-NR 300, 400, 500 400 391.5 3 100 200
S5-WR 400, 500, 600, 700, 800 600 582.7 5 158 400
S5-NR 500, 550, 600, 650, 700 600 595.8 5 50 200
S3-WR 400, 600, 800 600 576.5 3 200 400
S3-NR 500, 600, 700 600 594.4 3 100 200

Note—Bold font indicates conditions that overlap with Experiment 2.

either mean session rate [F vs. S; F(1,81) = 1.94, MS, =
200.3,p = .17] or n [3 vs. 5; F(1,81) = 0.06, MS, =
200.3, p = .8]. Mean absolute CE scores were lower in
the narrow range (M = 15.47 msec) than in the wide
range (M = 26.28 msec) conditions. The PC data lead to
a similar conclusion; significantly fewer errors also oc-
curred in the narrow than in the wide range condition
[mean PCs were .72 vs. .66; F(1,81) = 12.24, MS, =
0.008, p < .01], but no significant differences were due
to n [F(1,81) = 0.31, MS, = 0.008, p = .58]. Session
rate also had a significant effect, with faster sets pro-
ducing lower PC values than slower ones [F(1,81) =
8.80, MS, = 0.008, p < .01]. Taken together, these data
accomplish our first aim—namely, to confirm the find-
ings of Experiment 2 with respect to the role of R. Com-
bined, the two experiments eliminate » and SD as pre-
dictors of time-judgment errors.

In the service of our second aim—that is, evaluation
of Equation 1, we performed separate regression analy-

ses of CEs for each of the eight context conditions to de-
termine the location of P. Resulting P values appear in
Table 2 (conditions from Experiment 2 are indicated in
bold). Again, the CE data were combined for the fast and
slow sets, respectively, to arrive at two corresponding es-
timates of the location of P, 430 msec (R? = .83 for fast
session contexts) and 606 msec (R? = .80 for slow ses-
sion contexts). These data, and best-fit regression lines,
appear in Figure 7. Overall, Experiment 3 regression
analyses agree with corresponding ones of Experiment 2
(Figure 3) in showing prominent influences of the arith-
metic mean on these P values.

Next, we evaluated dRR as a predictor of the pattern
of constant errors and hence of P. The relevant CE data
are shown as a function of dRR in Figure 6 (data points
of Experiments 2 and 3 are denoted by O and X, re-
spectively). This figure indicates that dRR accounts for
71.5% variability in the CE scores over all eight Exper-
iment 3 conditions. When applied to all CE data—that is,
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Figure 7. Constant error scores as a function of base IOI and set (fast, slow) in Experi-
ment 3. Solid lines show the regression line for each set. For fast contexts, this line intersects
the zero constant error line at 430 msec (P for fast set); for slow contexts, the intersection

point is 606 msec (P for slow set).



from Experiments 2 and 3—the dRR metric accounts for
64.2% of the variance in constant errors.

Finally, we used Equation 1 to predict the observed lo-
cation of P for each of the four new session contexts in
Experiment 3. For generality, we assumed the same dRR,,
value (16.3 msec) as for Experiment 2. The resulting P’
values appear in Table 2; the mean absolute deviation be-
tween observed and predicted preferred period (P vs. P’)
was 33 msec, which is very similar to that observed for
Experiment 2.

In summary, Experiment 3 confirms that R, and not n,
is the best heterogeneity measure. In addition, Experi-
ment 3 data provide converging support for Equation 1;
they support the hypothesis that the location of P in any
session context is determined by a combination of mean
rate and session range.

GENERAL DISCUSSION

Three experiments examined the effects of context in
multirate sessions on the development of a preferred pe-
riod. In the introduction, we proposed two broad goals of
this research. One was to examine global (distributional)
effects of session context on a listener’s sense of pace.
The second was to assess the influence, if any, of trial-to-
trial rate changes on listeners’ time judgments. In this re-
search, we identified general statistical properties of a
session (e.g., mean and range of rates) that contributed
to listeners’ overall sense of pace in multirate sessions.
In addition, we found that momentary trial-to-trial changes
in local rate significantly influence accuracy and con-
tribute to the potent effects of session range on the emer-
gence of a preferred period. In this section, we discuss
these findings in terms of the spectrum of context factors
that appear to influence time judgments and then con-
sider the broader implications of this research.

The Spectrum of Context Factors

Three levels of context appear to contribute to an in-
dividual’s response to a given time interval. These in-
volve, respectively, the global distributional properties
of a session, trial-to-trial influences, and the local rate of
a sequence on a given trial.

Global context. The major goal of the present re-
search was to isolate principal distributional properties
of a temporal context that contribute to a listener’s sense
of pace. Most relevant to this goal were Experiments 2
and 3, in which local rate was decoupled from global ses-
sion rate in multirate sessions. In these experiments, it
was clear that session context had striking effects on
overall accuracy (PC) and constant errors (CE). Indeed,
the changing pattern of CE scores in the different ses-
sion context conditions provided the strongest evidence
that the emergence of a preferred periodicity (P) depends
on the global distributional properties of a session.

We considered two possible predictors of P associated
respectively with different measures of central tendency:
the arithmetic mean and the geometric mean. In both the
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fast and slow context conditions, we found that the pre-
ferred period (P) was best predicted by the arithmetic
mean, not the geometric mean, of the base 10Is of the
session. Overall, P was closer to 400 msec in sessions
with mean rates of 400 msec and closer to 600 msec in
those with mean rates of 600 msec. Although the present
data clearly favor the arithmetic mean, we do not rule out
the possibility that sessions with broader (or different)
distributions of session rates might tilt toward the GM
(Wearden & Ferrara, 1995, 1996). Moreover, the arith-
metic mean was not a perfect predictor. Although it pro-
vided very good estimates of P in some conditions (i.e.,
within 2 to 12 msec), in others this mean was wide of the
mark by as much as 98 msec. In short, the arithmetic
mean is part of the story, but it is not the whole story.

Session heterogeneity provides another piece of the
story. Heterogeneity effects were evident in both the
magnitude and likelihood of errors. Here, session range
appears to play an important role. With respect to likeli-
hood of errors, Figure 4 revealed higher PC levels for the
500-msec base IOl in the two narrow-range conditions
(F, S), with the lower levels for the same base IOl in cor-
responding wide-range conditions of Experiment 2. Not
only was overall accuracy much lower (and error likeli-
hood higher) in these multirate conditions than in the
single-rate conditions (Experiment 1), it was also much
lower in those multirate conditions where session range
was wide (holding mean session rate constant).

When session range was normalized by mean session
rate, the resulting relative range metric (RR) explained
almost 70% of the variance in overall accuracy. People
made the most errors when a session had a wide range of
rates that were, on average, fast and the fewest errors
when a session manifested a narrow range of local rates
that were, on average, slow. Similarly, taking account of
the magnitude and direction of these errors, the best pre-
dictor of CE scores involved RR, weighted by deviation
scores (i.e., the dRR metric). The dRR metric predicted
60%—70% of the variance in CE scores in Experiments 2
and 3. Ultimately, CE errors, regressed over base 10lIs,
revealed the signature pattern of over- and underestima-
tions that we identify with listeners’ reliance on a pre-
ferred period (or periods) where base 1OIs with relatively
fast local rates tend to be overestimated and those with
relatively slow rates tend to be underestimated. These er-
rors, which are symptomatic of failures to adapt to a
local rate, were not random; rather, they reflected an
overall bias toward those base 1OIs that were central in
each multirate condition.

Equation 1, which was developed to explain the ob-
served pattern of constant errors, predicts the preferred
internal periodicity for any condition (session) as a func-
tion of RR, dRR (i.e., dRR,), and the session mean. It
predicts that P’ varies inversely with RR and has two lim-
iting conditions. For a given (signed) value of dRR:
(1) If RR is arbitrarily small, due to a narrow range, P’
assumes an arbitrarily large absolute value, and a flat re-
gression line should emerge over CE scores. This ap-
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proximates the case of Experiment 1, where RR was
zero. Indeed, in Experiment 1, Equation 1 correctly pre-
dicts an indeterminate P and a flat regression line. (2) As
RR becomes arbitrarily large, due to gross widening of
the range (relative to mean rate), according to Equa-
tion 1, P’ converges to the mean session rate. In the limit,
with large RR, the arithmetic mean is the best global es-
timator of P. Thus, in Experiment 3 the two conditions
with the largest RR values (i.e., RR = 1.00 in F3-WR
and F5-WR due to wide range and fast mean rate)
yielded predicted and observed P estimates quite close to
the session mean rate (i.e., with deviations, on average,
within 6 msec of 400 msec).

Finally, we have cautioned that Equation 1 summa-
rizes primarily global properties of a session and their
influence on P. However, other session properties, which
may be only indirectly captured by Equation 1, may also
play arole. One of these involves trial-to-trial rate changes,
which we consider next.

Trial-to-trial context. The second goal of this re-
search was examination of the effects of trial-to-trial rate
changes. In terms of errors, it is clear that the likelihood
of making a mistake in judging a comparison time inter-
val is greater following a large change in local rate from
one trial to the next than following a small change. Evi-
dently, the perception of sequence rate on one trial de-
pends upon the lingering effects of the rate that is expe-
rienced on an immediately preceding trial (cf. Jungers,
Palmer, & Speer, 2002). Our findings in this respect are
noteworthy because they offer a glimpse of systematic
moment-to-moment changes in accuracy. Moreover, they
suggest that one reason the range, which is determined
by endpoints of an abstract time continuum of base 1Ols,
is important in Equation 1 is that it reflects the largest
rate change in real time from one trial to the next that a
listener encounters in a given session.

Others have noted similar trial-to-trial effects (Treis-
man, 1963; Warren, 1985). Warren suggests that a dy-
namic criterion shift rule is required to describe what
seem to be continual adjustments to novel stimulation,
although he does not spell out a trial-to-trial application
of such a rule. A useful feature of entrainment models is
that they do tackle this issue (e.g., Large & Jones, 1999).
In the latter vein, the present findings are compatible
with the basic assumption of entrainment models that
adaptation to a new rate should be differentially com-
promised when a relatively large rate change is involved.

This interpretation of a dynamically shifting preferred
period is supported by analyses of trial-to-trial respond-
ing. Over all sessions, 38% of the variance in error fre-
quency on a given trial (PC,) was explained by the dif-
ference between the local sequence rate on one trial and
that of the preceding trial. Thus, a large tempo change,
such as from a slow local rate to a much faster one (on
trials n—1 and n), renders a listener more likely to judge a
shortened comparison on trial z to be “same” or “shorter”
than its base 10l than would be the case with a smaller
rate change. The importance of moment-to-moment

changes is evident from analyses that hold constant relative
range and assess only effects due to local rate changes
within a session (indexed by RC). For instance, with RR
constant, between 25% and 44% of the variance in errors
on any given trial can be explained by the trial-to-trial
rate change.

Local context. Finally, in a task that asked listeners to
judge the duration of a comparison interval relative to
the duration specified by the local rate of the preceding
sequence, it is not surprising to find that listeners did
what they were asked. Listeners’ reliance on local rate
was readily inferred from the PSE scores for each base
IOI. Indeed, although the analysis of the diagnostic 500-
msec condition confirmed that the context of multirate
sessions systematically distorted perception of individ-
ual local rates, these data also speak to the dominance of
the local context rate on judgments. On average, the
mean CE values in the 500-msec context condition ranged
from —17 msec to +24 msec, reflecting error magni-
tudes of less than 5%. Such findings converge with those
of McAuley & Jones (2003), as well as others (e.g., Barnes
& Jones, 2000; Drake & Botte, 1993; McAuley & Kidd,
1998) who found that listeners tended to rely on local
context rate even in cases where they are told to ignore it.

Because local rate is such an important determiner of
performance, it appears to offer an intriguing link to
global context effects in the form of the local rate that re-
inforces the mean rate of the session. In sessions con-
taining a sequence with a local rate that reinforced the
mean rate of a session, the predicted value of P (i.e., P)
tended to be closer to observed estimates than in condi-
tions lacking a local rate that reinforced the mean rate.
Such findings imply that explanations of globally in-
duced time distortions must ultimately accommodate the
primacy of local context effects.

Broader Implications

Our interpretations speak to situations where people
must respond to time intervals embedded in contexts
where they experience a variety of pattern rates. As such,
these data have implications for understanding the de-
velopment of sensitivities to both local and global tempi
in music and other natural contexts. They suggest that in
listening to musical events, where tempo routinely changes
over time, listeners should exhibit systematic errors in
judging an individual local tempo. Tempo distortions
should arise from lingering effects of prior tempi (Madi-
son, 2001). In addition, a listener’s emerging sense of an
overall pace (i.e., a prevailing beat) in a musical event
will be drawn to those local tempi that are centrally lo-
cated within the distribution of experienced tempi. To-
gether, these local tempi will dominate in a listener’s
memory to specify the stable pace of the piece. Finally,
however, this construct of a global tempo, as indexed by
P, should not obscure the fact that it rests on real-time
experience.

Although entrainment models are designed to describe
tempo tracking by explicitly addressing trial-to-trial rate



changes, none have addressed the emergence of a sense
of overall pace based on the larger context. In an en-
trainment framework, the global sense of pace might
emerge from the activity of a single dominant adaptive
oscillator, or, alternatively, from reorganizing properties
of an ensemble of many adaptive oscillators. Determin-
ing which of these explanations is correct is a problem
for theoretical modeling and is beyond the scope of this
article. Nevertheless, applications of such entrainment
constructs to time judgments suggest some potential for
predictions about historically familiar phenomena, such
as assimilation (adaptation) and contrast (failure to adapt)
and gravitation to a general adaptation level (e.g., Hel-
son, 1964; Warren, 1985). Although entrainment theo-
ries appear to converge with general adaptation-level ap-
proaches, we do not claim a broader application of our
findings to dimensions other than time.

We return to an unanswered question regarding the re-
lationship between P (or P’) and the indifference interval.
For Fraisse, a biological periodicity is somehow respon-
sible for indifference interval phenomena. Experiment 1
seems to cast doubt on this explanation; moreover, Ex-
periments 2 and 3 suggest the importance of an environ-
mental shaping of some internal periodicity or periodic-
ities. However, recent research suggests that the periods
of active biological oscillations may differ with age.
Drake et al. (2000) found that young children preferred
sequence rates that were significantly faster than those
preferred by older children. Thus, in the present research
wherein the ranges of local rates included those most
comfortable for young adults, we may not see large in-
fluences of biologically determined preferred periods.

As we have seen, classical approaches often reject the
idea that periodic processes explain the indifference in-
terval in favor of interval time constructs using adaptation-
level calculations (e.g., Hellstrom, 1985; Helson, 1964).
For reasons outlined earlier, we have refrained from
equating a preferred periodicity with an indifference in-
terval. Yet, as already noted, it is difficult to ignore cer-
tain conceptual resemblances between adaptive oscilla-
tors, preferred periods, and various constructs used in
adaptation-level theories. Moreover, with respect to the
indifference interval, which is calculated as a null error
point within a set of individual time intervals, using the
two-interval paradigm, an undeniable counterpart is
found in the preferred periodicity, which is taken as a
null error point within a set of sequence rates, using the
sequence paradigm. However, as conventionally calcu-
lated, the indifference interval often rests on TOEs, which
requires a temporal reordering of the two individual time
intervals involved; TOE calculations putatively assess
the relative likelihood of errors in internal time codes for
one or both of the intervals. By contrast, P is calculated
from constant errors for a given sequence rate (base 10I).
This methodological/computational difference is ac-
companied by a corresponding interpretative difference:
in the latter, the sign and magnitude of a CE theoretically
reflect the degree to which an entraining oscillator fails
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to adapt to a given sequential rate. Note that the practice
of reordering individual intervals, intrinsic to TOE cal-
culations, inevitably changes the rate and/or rhythm of
the local context in the sequence paradigm, thereby ob-
scuring an assessment of adaptation. Hence, possible
theoretical differences or commonalities between the in-
difference interval and P are obscured by methodologi-
cal/computational differences.

One way of adjudicating these differences entails a
broader interpretation of temporal context, one that in-
corporates between-trial timing (local rate change) as
well as within-trial timing (e.g., local sequence rate). A
case can be made for this interpretation from the present
research, where we found that the effective context on
trial n appears to include the sequence on trial n—1.
Given a broader view of temporal context, we can ask
whether it is possible to adapt Equation 1, which predicts
P’, to predict values of an indifference interval. The two-
interval paradigm, which is typically used to estimate the
indifference interval, can now be viewed as a limiting
case of the sequence paradigm where within-trial timing
involves a short sequence of length one (i.e., having a
single base 10I), followed by a comparison interval. This
limiting case has been studied by McAuley and Jones
(2003), who successfully applied an entrainment model
to it. In this interpretation, a listener may track a series
of individual time intervals—that is, short sequences—
over trials in a session. All other things being equal, if
entrainment occurs in such a situation, adaptation should
be less efficient than in sessions comprising longer, ho-
mogeneous sequences; this is due to the increased density
of moment-to-moment time changes associated with
within- and between-trial timing in sessions with short
sequences (cf. Large & Jones, 1999). However, because
Equation 1 ignores trial-to-trial information, it can be ap-
plied to such two-interval sessions to ascertain whether P’
(derived from CE scores) predicts the value of an indif-
ference interval that emerges over these trials (i.e., as
measured by TOE scores). The most important conse-
quence will involve the value of R, the session range. In
a true sequential paradigm, R is constrained by the asym-
metry of standard and comparison IOIs in that it reflects
the range of only base IOIs. By contrast, in a typical two-
interval paradigm, where order reversals of standard and
comparison IOIs occur, R will necessarily encompass
comparison as well as the standard IOI values. Therefore,
the value of the range will generally be larger in the two-
interval paradigm than in the asymmetrical (sequential)
case. Nevertheless, if a commonality obtains between P
and the indifference interval, following Equation 1, we
expect that in sessions with randomly arranged pairs of in-
tervals, the indifference interval will be predicted by
Equation 1 and will manifest gravitation to the session
mean with increases in RR as implied by Equation 1.

In sum, recent experimental investigations inspired by
entrainment theory have concentrated on the effects of
manipulations of local context on time judgments. The
present research represents an attempt to understand the
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role of an extended (i.e., global) context on listeners’ re-
action to local sequence rates. In this regard, we find
lawful effects of global context, reflected in the emer-
gence of preferred periods; these effects can be under-
stood in terms of limits on the adaptive functions of an
entraining oscillator. Finally, they lead to an enlarged in-
terpretation of the context within which a time judgment
occurs.
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NOTES

1. There are a number of theory-dependent formulas for measuring
TOE that assess asymmetries in shorter/longer judgments as a function
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of the presentation order of the standard and comparison IOIs. A com-
mon equation for the calculation of TOE in the two-interval task is
TOE = 1/2 [P(correct/SL) — P(correct/LS)], where S and L refer to
short and long intervals, respectively.

2. The interpretation of TOE has a long, distinguished, and chal-
lenging history (for an excellent review, see Hellstrom, 1985). In gen-
eral, the causes of TOE are probably multiple and remain a topic of debate.

3. At this stage of theorizing, the separation of a perception stage
from a subsequent criterion setting in a decision making stage is virtu-
ally impossible. These distinctions rest upon a number of assumptions
that are not met in the dynamic environments we consider. Furthermore,
even if such stages could be justified, teasing them apart on a moment-
to-moment basis is certainly problematic both empirically and theoret-
ically. However, stage distinctions become less problematic within an
entrainment framework where moment-to-moment changes in attend-
ing are described (e.g., Large & Jones, 1999).
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4. In the present design, order reversals of each (single) comparison
with the final sequence IOI, for example, for each local rate condition,
would confound both order and comparison magnitude with degree of
rhythmic disruption of the context sequence.

5. We also analyzed the distribution of “‘same” responses to all com-
parisons for a given base IOI. Following an adaptation of the method of
adjustments for determining PSE (Gescheider, 1997), we computed the
mean of this distribution and determined the comparison IOI corre-
sponding to this value for all conditions of each experiment. These PSE
estimates were very close to those generated by our difference method.

6. ANOVAs were also performed that included trial block and ran-
dom order (I, I, III) as factors. Neither factor produced significant main
effects or interactions (p > .05).

7. A restricted range analysis that involves only “same” responses to
same comparisons also yields a significant correlation (r = —.42) be-
tween abs (CE) and P (“same”|same; p < .05, two-tailed).

APPENDIX

Psychometric functions for the three-response category (shorter, same,
longer) task used to estimate point of subjective equality (PSE) and hence
constant errors. Table A1 compares PSE estimates using our difference
method with those obtained using the method proposed by Greenberg (1965)
for three response category tasks. Three figures follow. Figure A1l shows
P(short) — P(long) for the 500-msec base IOl for Experiment 1 (baseline)
and all eight session context conditions in Experiment 2. Figures A2 and A3
compare the z transforms for our difference method and Greenberg’s method
for the baseline, F5, and S5 conditions. All graphs report data averaged over
subjects.

Table A1
Estimates of PSE for the 500-msec Base 101 Using the
Proposed Difference Method and the Modified Thurstone
Model Proposed by Greenberg (1965)

Estimate of PSE for 500-msec Base 101

Context Condition Difference Method Modified Thurstone Model
Baseline 504 508
F5 483 480
F4 505 500
F3 490 482
F2 500 500
S5 524 524
S4 509 508
S3 506 506
S2 511 509

Note—Estimates from the two methods were significantly correlated (» =
97).

(Continued on next page)
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P(Short) — P(Long)

APPENDIX (Continued)
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APPENDIX (Continued)
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Revised Thurstone Model (Greenberg, 1965)
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