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THIS ARTICLE CONSIDERS A SIGNAL DETECTION

theory (SDT) approach to evaluation of performance
on the Montreal Battery of Evaluation of Amusia
(MBEA). One hundred fifty-five individuals completed
the original binary response version of the MBEA
(n ¼ 62) or a confidence rating version (MBEA-C;
n ¼ 93). Confidence ratings afforded construction of
empirical receiver operator characteristic (ROC) curves
and derivation of bias-free performance measures
against which we compared the standard performance
metric, proportion correct (PC), and an alternative sig-
nal detection metric, d 0. Across the board, PC was
tainted by response bias and underestimated perfor-
mance as indexed by Az, a nonparametric ROC-based
performance measure. Signal detection analyses further
revealed that some individuals performing worse than
the standard PC-based cutoff for amusia diagnosis
showed large response biases. Given that PC is contam-
inated by response bias, this suggests the possibility that
categorizing individuals as having amusia or not, using
a PC-based cutoff, may inadvertently misclassify some
individuals with normal perceptual sensitivity as amusic
simply because they have large response biases. In line
with this possibility, a comparison of amusia classifica-
tion using d0- and PC-based cutoffs showed potential
misclassification of 33% of the examined cases.
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C ONGENITAL AMUSIA, OR TONE-DEAFNESS, IS

a lifelong impairment in musical ability that has
been primarily linked to a pitch processing def-

icit (Hyde & Peretz, 2004) that is unrelated to normal
hearing acuity, general neurological functioning, or

exposure to music (Ayotte, Peretz, & Hyde, 2002). The
assessment tool that has been most widely used over the
past decade to diagnose congenital and acquired forms
of amusia (Ayotte et al., 2002; Cuddy, Balkwill, Peretz, &
Holden, 2005; Hyde & Peretz, 2004; Peretz et al., 2008)
is the Montreal Battery of Evaluation of Amusia
(MBEA; Peretz, Champod, & Hyde, 2003); for an online
version of the test, see http://www.brams.umontreal.ca/
amusia-general/. The MBEA consists of six subtests,
which assess melodic organization (Scale, Contour, and
Interval), temporal organization (Rhythm and Meter),
and musical memory (Memory). For four of the subt-
ests (Scale, Contour, Interval, and Rhythm), listeners are
presented with pairs of melodies and asked to judge
whether the two melodies are the same or different,
while for the remaining two subtests (Meter and Mem-
ory), listeners are presented with a single melody on
each trial. For the Meter subtest, listeners judge whether
the presented melody is a march or waltz, while for the
Memory subtest, listeners judge whether the melody is
one that they’ve heard before on the previous subtests
(an old melody) or is previously unheard (a new
melody).

The tests of melodic organization differ in the type of
melodic change that is introduced on different trials. For
the Scale subtest, the different melody contains one note
that violates the key of the first melody, while keeping
the overall melodic contour intact. For the Contour
subtest, different melodies contain one note that violates
the contour of the first melody in each pair without
disrupting the key. For the Interval subtest, the altered
note changes the pitch interval while preserving the
melodic contour and key. For the Rhythm subtest,
rather than a melodic change, different melodies are
created by altering the onset time of one note so that
the preceding and following inter-note onset intervals
are changed. For all same-different subtests, half of the
melody pairs are the same and half are different. For the
Meter subtest, half of the melodies are marches (identi-
fied by a repeating strong-weak subjective accent pat-
tern) and half are waltzes (identified by a repeating
strong-weak-weak subjective accent pattern). For the
final Memory subtest, half of the melodies are old and
half are new.
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To assess performance on the MBEA, proportion
correct (PC) on each of the subtests is typically averaged
to produce a composite PC score; an equivalent method
is simply to sum the number of correct responses on
each of the subtests (as in, e.g., McDonald & Stewart,
2008; Tillmann, Schulze, & Foxton, 2009; Williamson,
McDonald, Deutsch, Griffiths, & Stewart, 2010). The
diagnostic criteria for amusia using the MBEA vary
(Ayotte et al., 2002; Douglas & Bilkey, 2007; Loui, Alsop,
& Schlaug, 2009), but one commonly used method is to
determine whether an individual’s composite PC or raw
score falls more than two standard deviations (SDs)
below the mean score of a normative sample (Peretz
et al., 2003).

The use of PC (or equivalently a raw score) as a per-
formance metric for the MBEA has been shown by
Peretz and colleagues (2003) to demonstrate a number
of favorable psychometric properties including approx-
imate normality, test-rest reliability, and convergent
validity. However, PC may not be the best measure to
assess MBEA performance because PC, by itself, does
not permit a distinction between listeners’ ability to
hear differences between the melodies (i.e., perceptual
sensitivity) and any general tendency to make one
response or the other (i.e., response bias). Moreover,
PC decreases with increasing response bias, indepen-
dent from sensitivity. Thus, as we will show below, using
a PC-based criterion on the MBEA to categorize an
individual as amusic or not (typical of many previous
studies) has the potential to misclassify non-amusic
individuals as amusic simply because they have a large
response bias.

To address this issue, the present article takes a signal
detection theory (SDT) approach to measuring MBEA
performance. To permit a comprehensive SDT analy-
sis, we asked listeners to provide confidence ratings
rather than binary judgments. We will refer to the
confidence-rating version of the test as the MBEA-C
to distinguish it from the MBEA. The potential benefit
of using confidence ratings and associated signal
detection measures to evaluate MBEA performance is
that it affords derivation of nonparametric sensitivity
measures against which we can compare PC and d0 (an
alternative signal detection performance metric) to
assess any potential biases in these measures. The
remainder of the introduction provides a short tutorial
on SDT and its application to the MBEA and MBEA-C,
followed by an overview of the present study.
MATLAB code for calculation of the SDT measures
of MBEA performance is included in the Appendix,
and can be downloaded from http://psychology.msu.
edu/TAPlab/publications.htm.

A Signal Detection Theory (SDT) Perspective
on the MBEA

SDT (Green & Swets, 1966) is a principled psychophys-
ical approach to measuring performance that has been
applied to a wide range of experimental tasks and
domains (Durlach & Braida, 1969; Ratcliff, McKoon,
& Tindall, 1994; Rousseau, Rogeaux, & O’Mahoney,
1999; Snodgrass & Corwin, 1988; Yonelinas, 1999). In
general, the SDT approach assumes a decision model
that provides a distinction between an individual’s abil-
ity to discriminate between stimulus classes (i.e., sensi-
tivity) and their tendency to make one response or the
other (i.e., response bias). For the subtests of the MBEA,
sensitivity refers to listeners’ ability to discriminate
between same versus different melodies, march versus
waltz meters, and new versus old melodies. High sensi-
tivity refers to good ability to discriminate between stim-
ulus classes and low sensitivity refers to poor ability to
discriminate between stimulus classes. Bias, in contrast,
refers to listeners’ general tendency to make one response
or the other (e.g., a general tendency to respond ‘‘same’’
or ‘‘different’’).

Sensitivity and response bias make independent con-
tributions to MBEA performance, but they cannot be
separated when PC is used as the dependent variable.
Taking as an example the same-different subtests, it is
critical to understand that poor performance (as
indexed by PC) can be caused by responding ‘‘same’’
to different trials, responding ‘‘different’’ to same trials,
or a combination of the two. Making errors of both
types equally often decreases sensitivity; that is, the par-
ticipant is less able to discriminate between the two
categories of melodies. On the other hand, responding
‘‘same’’ to different trials and not vice versa indicates the
presence of a response bias. SDT allows separation of
these two contributions to performance.

Within SDT, the specific decision model varies with
different task characteristics (MacMillan & Creelman,
2005), but for all of the subtests of the MBEA the deci-
sion model can be conceptualized as follows. The
brain’s response to a stimulus is assumed to be imper-
fect (i.e., noisy); as a result, stimuli comprising two clas-
ses form two normal distributions that vary along an
information dimension that is used to make a decision
about which stimulus class was presented (see Figure 1).
For the subtests of the MBEA, there are two stimulus
classes associated with same versus different,1 march

1 Although the Scale, Contour, Interval, and Rhythm subtests require
a same versus different response, the task does not constitute a same-
different task in strict signal detection terms. The reason is that the intact
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versus waltz, and new versus old. When a stimulus from
a particular class is presented, individuals are assumed
to compare the sample to the location of a decision
criterion in order to decide whether the stimulus is from
Class A (e.g., same, waltz, or new) or Class B (e.g.,
different, march, or old). If the value sampled from the
respective distribution is above (i.e., to the right of) the
decision criterion, the response is Class B (e.g., different,
march, old), whereas if the value is below (i.e., to the left
of) the criterion, the response is Class A (e.g., same,
waltz, new). When a participant correctly responds
Class B to a Class B stimulus, this is considered a hit,
and when a participant correctly responds Class A to
a Class A stimulus, this is considered a correct rejection.

Note that because the two distributions overlap, par-
ticipants will sometimes make errors. Some of the time,
the sampled value for a stimulus from Class A will fall
above the criterion, and the participant will incorrectly
respond Class B—a false alarm. In hypothesis-testing
terms, this is equivalent to making a Type I error.
Conversely, some of the time, the sampled value for
a stimulus from Class B will fall below the criterion, and
the participant will incorrectly respond Class A—a miss.
This is equivalent to making a Type II error. For the
same-different subtests, for example, a false alarm
would amount to responding ‘‘different’’ when the mel-
odies are the same, and a miss would amount to
responding ‘‘same’’ when the melodies are different.

When the criterion moves to the left, both the hit rate
(HR) and the false alarm rate (FAR) increase and in the
limit approach 1.0, whereas when the criterion moves to
the right, both the hit rate and the false alarm rate
decrease and in the limit approach 0. Movement of the
criterion corresponds to changes in response bias. For
the same-different subtests, movement of the criterion
to the left corresponds to a bias to say ‘‘different’’ (a lib-
eral response bias) and movement of the criterion to the
right corresponds to a bias to say ‘‘same’’ (a conservative
response bias). There is no response bias when the cri-
terion is exactly halfway between the two distributions
(as shown in Figure 1A); that is, the participant is
equally likely to respond ‘‘same’’ or ‘‘different.’’

The distance between the means of the two distribu-
tions provides a measure of an observer’s ability to
discriminate the two stimulus classes—independent of
the placement of the criterion. As the two distributions
move closer together, it is more difficult to tell the differ-
ence between the two stimulus classes and sensitivity is
lower, whereas when they are farther apart, it is easier to
tell the difference between the two stimulus classes and
sensitivity is higher. Critically, criterion location is inde-
pendent from the distance between the distributions.

Information dimension

Class A Class B

Response criterion, c A)

B)

Information dimension

Class A

Class B

Response criterion, c 

FIGURE 1. A schematic of the SDT model. Stimuli from each of two

stimulus classes (Class A and Class B) are represented internally along

an information dimension; the location of a response criterion, c, along

the information dimension determines the decision about which

stimulus class was presented. In the figure, stimuli that fall to the

left of the criterion are associated with a Class A response and

stimuli falling to the right of the criterion are associated with a Class

B response. Since the distributions overlap, some Class A stimuli will be

associated with a Class B response, and vice versa. In Panel A, the

distributions underlying stimulus Classes A and B satisfy the equal-

variance assumption of SDT. In Panel B, however, the equal-variance

assumption is violated; the Class B variance is larger than the Class A

variance.

version of each melody is only presented as the first melody in the pair. A
true same-different task requires that both stimulus classes (i.e., same,
different) must be presented with equal likelihood in both positions; that
is, as the first and second melody in each pair. The current task is more
precisely a ‘reminder’ task, because instances from only one stimulus
distribution (i.e., same) are presented in the first position of each melody
pair, followed with equal likelihood by a stimulus from either distribution
(i.e., same, different).
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An important feature of the basic signal detection model
is that the information axis is typically represented in
standardized (z-score) units. This allows for both the
placement of the criterion and the separation of the
two distributions to be measured in units of standard
deviation, which are comparable across tasks and
conditions.

Perceptual sensitivity (d0) and criterion location (c)
can be calculated for each participant and subtest using
the proportion of hits (HR) and the proportion of false
alarms (FAR). Sensitivity, d 0, is determined by z(HR) –
z(FAR), and the criterion location, c, is determined by
�0.5*[z(HR) þ z(FAR)]. Since both d0 and c are mea-
sured in standard deviation units (i.e., z-scores), an
important assumption of the basic SDT approach is
that the two distributions have equal variance (as in
Figure 1A). Otherwise (see Figure 1B), estimates of
d0 and c would depend on whether they were calculated
with respect to the standard deviation of Stimulus
Class A or the standard deviation of Stimulus Class
B. Critically, d0 and c only represent independent per-
formance measures if the equal-variance assumption is
satisfied. When this assumption is violated, d0 is no
longer independent of response bias, and instead varies
with c.

The independence of sensitivity and bias under the
equal-variance assumption can be understood by repre-
senting HR and FAR on what is referred to as an implied
receiver operator characteristic (ROC; or relative operat-
ing characteristic) curve. Examples are shown in Figure 2.
On this graph, FAR is plotted on the x-axis and HR is

plotted on the y-axis. If the equal-variance assumption
holds, then the ROC curve (shown in Figure 2A) is
symmetrical around the minor diagonal, and thus traces
an iso-sensitivity curve, meaning that all points on the
curve have the same d 0 value, but different criterion
values, c.

Notably, when sensitivity, d 0, is held constant and the
criterion, c, is allowed to vary, then PC also varies in a sys-
tematic manner. Figure 3 shows a three-dimensional
plot of PC as a function of d0 and c. PC can be calculated
from d0 and c according to the following formula:

PC ¼
F d0

2 � c
� �

þ 1� F �d0
2 � c

� �� �

2
ð1Þ

where F returns the corresponding value of the cumu-
lative normal distribution function. When c ¼ 0, PC is
maximal. With increasingly positive or negative values
of c, corresponding to an increasingly conservative or
liberal response criterion, values of PC decrease. This
means that for any non-zero response criterion, c, PC
underestimates the perceptual sensitivity of the partic-
ipant. Moreover, the degree of bias is not a linear func-
tion of d0. Instead, the degree of bias due to shifts of the
response criterion increases up to a maximum at d0 ¼
2.75 and decreases thereafter. Notably, the maximum
amount of bias estimated here is 28% in terms of PC.
For a d0 of 2.75 – quite high sensitivity – an individual
with zero response bias would achieve PC ¼ .92. How-
ever, an individual with equal sensitivity (the same value
of d 0), but a response criterion, c ¼ + 2.0, would

FAR

H
R

0.0
0.0

1.0

1.0
A) B)

H
R

0.0

1.0

FAR
0.0 1.0

FIGURE 2. Normal-model ROC curves. Hit rate (HR) is plotted as

a function of false alarm rate (FAR). Panel A shows a theoretical ROC

curve for a case when the equal-variance assumption is satisfied. The

ROC curve is symmetrical around the minor diagonal, and d0 is the same

for every (FAR, HR) coordinate pair. Panel B shows a theoretical ROC

curve for a case when the equal-variance assumption has been violated.

The ROC curve is asymmetrical around the minor diagonal; thus every

(FAR, HR) pair corresponds not only to a different value of c but also to

a different d0 value. Here, d0 no longer constitutes an unbiased measure

of performance.

FIGURE 3. Three-dimensional plot of PC as a function of sensitivity (d0)

and the response criterion, c. Except for the bias-free case (c ¼ 0), PC

underestimates performance, and the degree of underestimation

increases as the value of c becomes either more positive or more

negative.
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achieve only PC ¼ .63. Thus, if a participant responds
using a relatively extreme response criterion, c, then PC
becomes a misleading measure of performance. More-
over, in the context of the MBEA, if a PC-based cut-off
is used to determine whether or not an individual is
amusic, then an individual with a relatively extreme
response criterion and normal perceptual sensitivity has
the potential to be misclassified.

From a SDT perspective, the problem of amusia clas-
sification is further compounded when the equal-
variance assumption does not hold. In this case, the
implied ROC curve is asymmetrical around the minor
diagonal (Figure 2B) and every (FAR, HR) point on the
curve no longer corresponds to the same d0 value. This
means that d0 would also be a biased measure of per-
formance. In this case, nonparametric measures of
sensitivity must be derived from empirical ROC
curves;2 we describe this procedure below (see Appen-
dix for MATLAB code that can be used to calculate
these measures). One way to test the equal-variance
assumption is to generate an empirical ROC curve,
which involves explicitly manipulating criterion loca-
tion by having participants make confidence ratings.
Requiring a confidence rating response effectively
moves the criterion along the information dimension
from left (when the listener responds ‘‘very sure
same’’) to right (when the listener responds ‘‘very sure
different’’). To construct an empirical ROC curve, both
the proportions of ‘‘same’’ (‘‘waltz,’’ ‘‘new’’) responses
and the proportions of ‘‘different’’ (‘‘march,’’ ‘‘old’’)
responses must be considered for each confidence rat-
ing category. Summing proportions of each response
type as the response criterion moves from left to right
along the information dimension yields cumulative
response proportions for each response category; plot-
ting cumulative proportions of ‘‘different’’ responses as
a function of cumulative proportions of ‘‘same’’
responses yields an empirical ROC curve. When
cumulative response proportions are z-transformed,
the plotted zROC approximates a straight line. When
the equal-variance assumption is satisfied, the slope of
the zROC line is 1; this is because the zROC slope is
a ratio of the standard deviations underlying the two

stimulus classes. A zROC slope different from 1 indi-
cates a violation of the equal-variance assumption.

Overview

Participants in the present study either completed the
original version of the MBEA with its binary response
format or the MBEA-C involving a 6-point confidence
rating scale. Aside from the response mode, the two
tests were identical. The main motivation for obtaining
confidence ratings with the MBEA-C is that it permitted
the construction of empirical ROC curves and a test of
whether the equal-variance signal detection assumption
holds for the MBEA. Failure to satisfy this assumption
would mean that both PC and d0 would be biased per-
formance measures and a better choice would be non-
parametric ROC-based statistics. However, satisfaction
of this assumption allowed us to use the nonparametric
measures as a benchmark against which to test PC and
d0, thereby confirming that d0, but not PC, is an unbi-
ased measure of MBEA performance.

We were also interested in comparing the response
criterion, c, for individuals whose MBEA performance
fell more than 2 SD below mean PC on the MBEA for
amusia diagnosis to individuals who were considered to
have normal musical abilities. One important possibility
regarding poor MBEA performance associated with
amusia is that, since PC cannot separate contributions
of sensitivity and response bias, amusia classification
may be based in part on response bias in addition to
overall poor sensitivity.

Finally, we were interested in comparing empirical
ROC curves for amusics versus non-amusics. The
potential benefits of such a comparison are highlighted
by studies showing differences in the shape of ROC
curves for individuals demonstrating memory impair-
ments due to amnesia (Aly, Knight, & Yonelinas, 2010),
hippocampal damage (Vann et al., 2009), or normal
aging (Parks, DeCarli, Jacoby, & Yonelinas, 2010) rela-
tive to control participants. Thus, in considering why
individuals do very poorly on the MBEA, the ROC-
based analyses of the MBEA-C may highlight novel
performance differences between these subgroups that
help clarify the nature of amusia.

Method

PARTICIPANTS

One hundred fifty-five individuals with self-reported
normal hearing from the Bowling Green State Univer-
sity and Michigan State University communities com-
pleted either the MBEA-C or the original version of the

2 We note here that the measures we describe are nonparametric in the
sense that they do not rely on assumptions about the form of the
distributions underlying the two stimulus classes. This is different from
using nonparametric statistics on a non-normally distributed dependent
measure, which does not eliminate problems with PC as a measure of
performance. Our main point is that PC as a measure of performance is
tainted by response bias. The nonparametric measures we introduce are
designed to correct for response bias and (if present) violation of the
equal-variance assumption of SDT.
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MBEA in exchange for course credit or a cash payment
of $10/hr. Ninety-three individuals (68 female) com-
pleted the MBEA-C (age, M ¼ 20.6 yrs, SD ¼ 3.3 yrs;
education, M ¼ 15.2 yrs, SD ¼ 2.4 yrs; formal music
training, M ¼ 4.2 yrs, SD ¼ 4.0 yrs). Sixty-two indivi-
duals (39 female) completed the original version of
the MBEA (age, M ¼ 20.4 yrs, SD ¼ 3.3 yrs; education,
M ¼ 14.5 yrs, SD ¼ 1.8 yrs; formal music training,
M ¼ 3.9 yrs, SD ¼ 4.3 yrs). Demographic information
for all participants is summarized in Table 1. The two
participant groups did not differ in terms of age
(p ¼ .73) or years of music training (p ¼ .66), but were
marginally different with respect to years of education
(p ¼ .06), with the sample completing the MBEA-C hav-
ing on average slightly more education (MBEA: M¼ 14.5
years, SD ¼ 1.8; MBEA-C: M ¼ 15.2 years, SD ¼ 2.4).

STIMULI, EQUIPMENT, AND PROCEDURE

The original MBEA and MBEA-C consist of thirty
novel melodies plus fifteen additional melodies that
serve as new melodies on the Memory subtest (Peretz
et al., 2003). Each same-different subtest also includes
one catch trial where the difference between melodies
is very obvious; catch trials were included to ensure
that participants were attending to the task. Mean mel-
ody duration is 5.1 s for the melodies presented in the
Scale, Contour, Interval, Rhythm, and Memory subt-
ests and 11 s for the melodies presented in the Meter
subtest. Melodies comprising the Meter subtest also
included an accompaniment that emphasized the
repeating strong-weak-strong-weak or strong-weak-
weak-strong-weak-weak accent patterns associated
with marches and waltzes, respectively. For the Scale,
Contour, Interval, and Rhythm subtests, participants
heard a pair of melodies on each trial and then rated
how confident they were that the two melodies in each
pair were the same or different on a scale ranging from
‘‘1’’ (‘‘sure same’’) to ‘‘6’’ (‘‘sure different’’); participants

completing the original version of the MBEA, simply
responded ‘‘same’’ or ‘‘different.’’ For all same-different
subtests, half of the melody pairs were the same and
half were different. For the Scale subtest, different mel-
odies contain one note that violates the key of the
intact version of the melody, while keeping the overall
melodic contour intact. For the Contour subtest, dif-
ferent melodies contain one note that violates the con-
tour of the intact melody in each pair without
disrupting the key. For the Interval subtest, the altered
note changes the pitch interval while preserving the
melodic contour and key. For the Rhythm subtest,
rather than a melodic change, different melodies are
created by shifting the temporal location of one note so
that the preceding and following inter-note onset
intervals are altered.

For the Meter subtest, a single melody was presented
on each trial and participants were asked to rate the
extent to which they were confident that the melody
was a march or waltz on a scale ranging from ‘‘1’’
(‘‘sure march’’) to ‘‘6’’ ( ‘‘sure waltz’’); participants
completing the original version of the MBEA simply
responded ‘‘march’’ or ‘‘waltz.’’ Prior to completing the
Meter subtest, participants were told that marches
sound like groups of two, with an alternating strong-
weak-strong-weak accent pattern, and waltzes sound
like groups of three, with a strong-weak-weak-strong-
weak-weak accent pattern. They then heard examples
of a march and a waltz and completed four training
trials with feedback. Half of the melodies on the Meter
subtest were marches and half were waltzes.

For the final Memory subtest, 15 old and 15 new
melodies were presented; old melodies had been heard
previously in the earlier subtests, while new melodies
had not been heard previously, but had similar charac-
teristics to the old melodies. Participants completing the
MBEA-C rated the familiarity of the melody on a scale
ranging from ‘‘1’’ (‘‘sure new’’) to ‘‘6’’ (‘‘sure old’’); par-
ticipants completing the original version of the MBEA
simply responded ‘‘new’’ or ‘‘old.’’

Both the MBEA-C and original version of the MBEA
were adapted to be administered using E-Prime soft-
ware (Psychology Software Tools, Inc.) running in
a Microsoft Windows environment on a Dell Optiplex
computer. All stimuli were presented at a comfortable
volume (*70 dB) over Sennheiser HD280 head-
phones. Subtests were presented in the following
order: Scale, Contour, Interval, Rhythm, Meter, and
Memory. This order of subtest presentation is the same
as in Peretz et al. (2003). Following administration of
the MBEA-C or original version of the MBEA, listeners
filled out several surveys that included questions about

TABLE 1. Demographic Information for the Participants Completing
Both the Original Version of the MBEA with Binary Eesponses and
the MBEA-C Involving Confidence Rating Responses.

MBEA-C MBEA

n (female) 93 (68) 62 (39)
Age (years + SD) 20.6 (3.3) 20.4 (3.3)
Education (years + SD) 15.2 (2.4) 14.5 (1.8)
Music Training (years + SD) 4.2 (4.0) 3.9 (4.3)

Note: Aside from the response mode, the two versions were otherwise identical.
Sample size (n) is shown with the number of female participants in parentheses,
while mean age, education, and music training (all given in years) are shown with
standard deviation (SD) in parentheses.

A Signal Detection Approach to the MBEA 485



participant age, gender, music training, and level of
education. Overall, the battery and additional surveys
took between 60 and 90 min to administer.

DATA ANALYSIS

First, catch trials were removed from the analysis; all
participants performed 100% correct on catch trials. To
permit a comparison between the MBEA-C and original
version of the MBEA, confidence ratings for the MBEA-C
were collapsed into binary response categories; ratings
of ‘‘1,’’ ‘‘2,’’ and ‘‘3’’ were coded as ‘‘same,’’ ‘‘march,’’ or
‘‘new’’ responses (depending on the subtest), while
ratings of ‘‘4,’’ ‘‘5,’’ and ‘‘6’’ were coded as ‘‘different,’’
‘‘waltz,’’ or ‘‘old.’’ Then, binary response proportions
were used to calculate PC, d0, and c for participants
completing the MBEA-C and original version of the
MBEA. PC was taken as the proportion of correct
responses out of 30 trials on each subtest; d0 and c
were calculated according to the following standard
formulas:

d0 ¼ zðHRÞ � zðFARÞ ð2Þ

c ¼ �1=2½zðHRÞ þ zðFARÞ� ð3Þ
Hits were defined as the proportions of ‘‘different,’’
‘‘march,’’ or ‘‘old’’ responses given for different, march,
or old trials, respectively, and false alarms were defined
as the proportions of ‘‘different,’’ ‘‘march,’’ or ‘‘old’’
responses given for same, waltz, or new trials, respec-
tively. For all subtests, values of d0 equal to 0 correspond
to chance performance, and larger values of d0 corre-
spond to increased perceptual sensitivity and better
performance. For all but the Meter subtest, negative
values of c can be interpreted as a liberal response strat-
egy (i.e., a tendency to respond ‘‘different’’ or ‘‘old’’)
whereas positive values of c can be interpreted as a con-
servative response strategy (i.e., a tendency to respond
‘‘same’’ or ‘‘new’’). Values of c ¼ 0 indicate no response
bias. We note here that the value of c for the Meter
subtest does not meaningfully align with either a liberal
or conservative response strategy, but rather reflects
a tendency to respond ‘‘march’’ or ‘‘waltz,’’ respectively.

Confidence ratings for participants completing the
MBEA-C were then used to construct empirical ROC
curves for each subtest. When an individual responds
using the extremes on the rating scale (e.g., ‘‘very sure
same’’ and ‘‘very sure different’’) without making use of
the middle of the scale (i.e., they fail to make use of the
full rating scale), it is not possible to construct empirical
ROC curves for that individual. This is especially likely
for participants who perform extremely well on the

MBEA. Thus, for the current study, we aggregated data
over small numbers of participants (n ¼ 4) and itera-
tively constructed empirical ROC curves based on aver-
age data in the following manner. First, we randomly
selected data for four participants. We chose four
because this was the number of amusic participants in
our MBEA-C sample (see below), and we wanted to
match sample sizes when comparing amusic and non-
amusic individuals. Then, we calculated proportions of
‘‘different’’/‘‘march’’/‘‘old’’ responses and ‘‘same’’/
‘‘waltz’’/‘‘new’’ responses for each rating category aver-
aged over the four randomly selected participants and
used these values to construct ROC curves by plotting
cumulative response proportions as described in the
Introduction. Next, we z-transformed the cumulative
response proportions to create zROCs, correcting for
proportions of 0 and 1 using 1/2N and 1 – 1/2N, respec-
tively, where N ¼ 15 trials (Macmillan & Creelman,
2005).

Several dependent measures were then derived from
the empirical ROCs. First, the slope, s, of the zROCs for
each subtest is given by:

s ¼ d02=d01 ð4Þ

where, theoretically, d01 corresponds to the horizontal
distance from the zROC to the major diagonal at the
point where z(HR) ¼ 0, and d02 corresponds to the
vertical distance from the zROC to the major diagonal
where z(FAR) ¼ 0. Practically, s is estimated from the
best-fit regression line through the zROC data points.
The values d01 and d02 depend on the standard devia-
tions of the distributions underlying the stimulus classes
for a given subtest. The slope of the zROC, s, gives the
ratio of the standard deviations of the distributions
underlying the two stimulus classes; thus, when the
standard deviations of the two distributions are equal,
s ¼ 1, and d0 is an accurate measure of perceptual sen-
sitivity. When, s 6¼ 1, a more appropriate measure of
perceptual sensitivity is da, which corrects for violation
of the equal-variance assumption:

da ¼ 2= 1þ s2
� �� �1=2� z HRð Þ � s � z FARð Þ½ � ð5Þ

The measure da is given in units of root-mean-square
standard deviation for the two stimulus classes. We also
calculated Az, which corresponds to the area under the
normal-model ROC and increases from .5 at zero sen-
sitivity (i.e., chance) to 1.0 for perfect performance. Az is
a nonparametric performance measure, corrected for
non-unit slope zROCs and response bias, and can be
compared to PC:
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Az ¼ F da=
p

2ð Þ ð6Þ

On each of 10,000 iterations, we estimated s, da, and Az

as described above. These estimates formed a sampling
distribution from which we estimated a test statistic for
each dependent variable (Ernst, 2004).

Results

COMPARISON OF THE MBEA-C TO THE MBEA

We first compared performance on the MBEA for the
two response modes. Table 2 summarizes performance
on the MBEA-C and the original version of the MBEA
for PC, d0, and c for each subtest and combined across
subtests. Overall performance on the MBEA-C was
slightly better than performance on the MBEA for both
PC (.84 + 0.01 versus .80 + .01, t(153) ¼ �2.52,
p < .05, Cohen’s d ¼ 2.43) and d0 (2.00 + 0.09 versus
2.24 + 0.07, t(153)¼�2.30, p < .05, Cohen’s d¼ 2.23).
In contrast, no differences were observed in response
criterion, c, for the two versions of the test (MBEA-C:
c¼ 0.02 + 0.02; MBEA: c¼ 0.04 + 0.04, t(153)¼ 0.44,
p ¼ .66, Cohen’s d ¼ 0.45). To explore the slight per-
formance advantage on the MBEA-C further, we com-
pared performance on the MBEA-C and the MBEA for
each subtest by conducting separate families of
Bonferroni-corrected independent-samples t-tests
(per-comparison a ¼ .017). For both PC and d0, perfor-
mance on the Rhythm and Meter subtests was signifi-
cantly better on the MBEA-C than on the MBEA (PC,
Rhythm: t(153)¼�2.52, p¼ .01, Cohen’s d¼ 2.63; PC,
Meter: t(153) ¼ �2.91, p ¼ 0.004, Cohen’s d ¼ 2.55; d0,
Rhythm: t(153)¼�2.63, p¼ .009, Cohen’s d¼ 2.57; d0,
Meter: t(153) ¼ 2.74, p ¼ .007, Cohen’s d ¼ 2.63), but

did not differ for any of the other subtests. This sug-
gests that the slight performance advantage observed
for the MBEA-C compared to the original MBEA was
driven by the Rhythm and Meter subtests only. Explor-
atory analyses of these subtest differences revealed that
performance on the Rhythm subtest correlated signif-
icantly with years of education (PC: r(141) ¼ .18,
p ¼ .03, d 0: r(141) ¼ .18, p ¼ .03), and when this
variable was included as a covariate, the difference
between the MBEA and the MBEA-C on the Rhythm
subtest did not reach statistical significance with a cor-
rected a-level (PC: p¼ .04, d0: p¼ .03). Including years
of education as a covariate did not influence results for
the Meter subtest.

ROC ANALYSIS OF THE MBEA-C

Next, we used confidence ratings from the MBEA-C to
construct empirical ROC curves for each subtest. Figures
4 and 5 show normal-model ROCs and zROCs, respec-
tively, based on data aggregated over all participants.
Table 3 reports the signal detection measures s, da, and
Az separately for each subtest calculated according to the
iterative method described above. The slopes of the
zROCs, s, provide an assessment of whether the equal-
variance signal detection model holds for each subtest.
The s ¼ 1 case corresponds to the situation when the
distributions for Class A and Class B have equal variance.
Critically, when s 6¼ 1, d0 varies with the criterion, c, and
thus represents a biased measure. For zROCs with non-
unit slope (s 6¼ 1), the measures da and Az provide unbi-
ased alternatives to d0 and PC, respectively.

Monte Carlo permutation tests were conducted to test
for differences between the estimated signal detection
measures and their expected values under an equal-
variance assumption. On each iteration, estimated

TABLE 2. The Dependent Measures PC, d0, and c (with SD in Parenthesis) for each Subtest of the MBEA-C and MBEA.

Subtest

Scale Contour Interval Rhythm Meter Memory Overall

MBEA-C (n ¼ 93) PC 0.84 0.81 0.8 0.84 0.84 0.9 0.84
(0.09) (0.12) (0.12) (0.11) (0.16) (0.09) (0.08)

d0 2.93 2.68 2.54 2.93 2.34 2.74 2.69
(0.71) (0.90) (0.94) (0.78) (1.18) (0.76) (0.63)

c �0.04 0.07 0.21 0.06 �0.18 0.02 0.02
(0.45) (0.38) (0.38) (0.39) (0.26) (0.28) (0.22)

MBEA (n ¼ 62) PC 0.83 0.79 0.77 0.79 0.76 0.88 0.80
(0.10) (0.13) (0.13) (0.12) (0.21) (0.10) (0.10)

d0 2.89 2.53 2.37 2.56 1.74 2.54 2.44
(0.73) (0.95) (0.98) (0.94) (1.52) (0.81) (0.72)

c �0.05 0.06 0.21 0.04 �0.11 0.08 0.04
(0.49) (0.50) (0.50) (0.50) (0.25) (0.33) (0.30)
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slopes were compared against 1, estimates of da were
compared against average d0 for each 4-participant sam-
ple, and estimates of Az were compared against average
PC. Differences between observed and expected values
on each iteration were used to form a sampling distri-
bution, with mean equal to zero under the null

hypothesis, that is, that observed and expected values
did not differ. If the null hypothesis value (i.e., zero) fell
more than 2.33 SD away from the true mean of the
sampling distribution (corresponding to p < .01), the
observed and expected values were considered to be
significantly different. Slopes did not differ significantly
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from their expected values of 1 for any subtest (Scale:
z¼ �0.16, p ¼ .44; Contour: z ¼ 0.05, p¼ .48; Interval:
z ¼ 0.02, p ¼ .49; Rhythm: z ¼ 0.23, p ¼ .41; Meter: z ¼
�0.41, p¼ .34; Memory: z¼�1.07, p¼ .14), indicating
satisfaction of the equal-variance assumption. Consis-
tent with this, da values were not significantly different
from d0 for any subtest (Scale: z ¼ �1.50, p ¼ .07;
Contour: z ¼ �1.48, p ¼ .07; Interval: z ¼ �1.71, p ¼
.04; Rhythm: z ¼ �1.66, p ¼ .06; Meter: z ¼ �1.52,
p ¼ .06; Memory: z ¼ �1.45, p ¼ .07), indicating that
d0 is a minimally biased measure of performance for the
MBEA. However, PC values significantly underesti-
mated performance for all of the same-different subtests
(Scale: z ¼ 3.52, p < .001; Contour: z ¼ 3.92, p < .001;
Interval: z ¼ 3.21, p < .001; Rhythm: z ¼ 3.27, p < .001);
this difference did not reach statistical significance for
the Meter (z ¼ 2.11, p ¼ .02) or Memory subtest
(z ¼ 2.01, p ¼ .02).

In sum, inspection of empirical ROC curves revealed
that PC is generally a suboptimal measure of sensitivity
for the MBEA. For all of the same-different subtests, PC
underestimated sensitivity relative to Az, which provides
an analogue to PC that is corrected for response bias.
The equal-variance assumption of SDT was also found
to be satisfied for all subtests, meaning that d0 is not
tainted by (i.e., is independent of) response bias, thus
indicating that d0 is preferable to PC as a measure of
MBEA performance. This was confirmed by compari-
sons of d0 to the nonparametric measure da, which indi-
cated that d0 did not differ significantly from da for any
subtest.

SIGNAL DETECTION EVALUATION OF NONAMUSIC AND AMUSIC

LISTENERS

Next, we compared nonamusic and amusic samples of
listeners using signal detection measures derived from
confidence rating responses on the MBEA-C. To classify
listeners as amusic, we adopted the commonly used
convention of considering amusic individuals to be
those with composite PC scores more than 2 SD below
the mean of our full sample (Peretz et al., 2003); an
equivalent method is simply to sum the number of

correct responses on each of the subtests. Although the
above results argue against the use of PC as the primary
dependent variable to summarize MBEA performance,
we used PC to form the amusic group so that we could
evaluate the results of this practice using alternative
signal detection measures. For our sample of 93 parti-
cipants, four met the criterion for amusia diagnosis,
consistent with the number expected when using
a 2 SD below the mean cutoff in a slightly negatively
skewed distribution (Henry & McAuley, 2010). Nona-
music (M¼ 4.32, SD¼ 3.99) participants were found to
have significantly more music training than amusic lis-
teners (M ¼ 0.50, SD ¼ 1.00) based on a single sample
t-test comparing nonamusic music training data against
the mean of the amusic sample, t(87) ¼ 3.88, p < .001.3

Results for all of the dependent measures are summa-
rized in Table 4 separately for amusic and nonamusic
samples. To compare the scores for amusic to nonamu-
sic participants, we conducted single-sample t-tests for
the nonamusic data against the test value equal to the
mean of the amusic group. As expected based on the use
of PC to diagnose amusia, average values of d0 were
lower for the amusics than for the non amusics for each
of the subtests [Scale: t(88) ¼ 17.86, Cohen’s d ¼ 1.89;
Contour: t(88) ¼ 15.30, Cohen’s d ¼ 1.62; Interval:
t(88) ¼ 17.47, Cohen’s d ¼ 1.85; Rhythm: t(88) ¼
20.76, Cohen’s d ¼ 2.20; Meter: t(88) ¼ 14.16, Cohen’s
d ¼ 1.50; Memory: t(88) ¼ 20.39, Cohen’s d ¼ 2.16; all
ps < .001]. More interesting was a consideration of dif-
ferences in the criterion score, c. For all of the same-
different subtests, amusics were more conservative than
nonamusics [Scale: t(88) ¼ 13.17, Cohen’s d ¼ 1.40;
Contour: t(88) ¼ 6.51, Cohen’s d ¼ 0.69; Interval:
t(88) ¼ 10.67; Cohen’s d ¼ 1.13; Rhythm: t(88) ¼ 4.05,

TABLE 3. ROC-based Dependent Measures s, da, and Az for Each Subtest of the MBEA-C.

Subtest

Scale Contour Interval Rhythm Meter Memory

s 0.95 1.01 1.01 1.10 0.88 0.73
da 2.00 1.78 1.64 1.97 1.96 2.44
Az 0.92 0.89 0.87 0.91 0.90 0.95

3 Although the nonamusic group tended to have more music training
than the amusic group, we point out that the observed group difference
results from a significant correlation across the entire sample between
years of musical training and performance, as indexed by both PC, r(90)
¼ .44, p < .001, and d0 , r(90) ¼ .45, p < .001. Thus, the relationship
between music training and performance on the MBEA is more
continuous and it is not simply the case that nonamusic individuals are
musically trained, while amusic individuals are not.
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Cohen’s d ¼ 0.43; all ps < .001]. That is, relative to non-
amusics, amusic participants responded ‘‘same’’ more
often than ‘‘different.’’ Mean c values for amusic and
nonamusic participants are reported in Table 4. Response
biases also differed between amusic and non-amusic
groups for the Meter, t(88) ¼ 6.15, p < .001, Cohen’s
d ¼ 0.65, and Memory, t(88) ¼ 9.00, p < .001, Cohen’s
d ¼ 0.95, subtests. For the Memory subtest, amusics
tended to use a more liberal response criterion than non-
amusics, responding ‘‘old’’ more often than ‘‘new.’’ For
the Meter subtest, nonamusics had slightly more liberal
response criteria than amusics. However, this difference
is difficult to interpret since negative values of c for this
subtest only indicate a slight tendency to respond
‘‘march’’ more often. The reliable difference in estimates
of c for amusics and nonamusics across all of the MBEA
subtests raises the possibility that differences in response
bias could impact amusia classification (a possibility we
consider more directly below).4

We also compared ROC-based measures for the
amusic and nonamusic groups for each subtest using

the same permutation test described above. Figures 6
and 7 show normal-model ROCs and zROCs, respec-
tively, for both groups. Comparison of s values for
nonamusics relative to amusics revealed that slopes did
not differ significantly between groups for any subtest
[Scale: z ¼ �0.17, p ¼ .43; Contour: z ¼ 1.50, p ¼ .07;
Interval: z ¼ .24; Rhythm: z ¼ 0.18, p .43; Meter:
z ¼ �0.14, p ¼ .44; Memory: z ¼ 0.22, p ¼ .41]. Not
surprisingly, da and Az were significantly different
between amusic and nonamusic groups for all same-
different subtests [da – Scale: z ¼ 3.22, p < .001; Con-
tour: z ¼ 3.21, p < .001; Interval: z ¼ 4.13, p < .001;
Rhythm: z ¼ 3.29, p < .001; Az – Scale: z ¼ 2.62,
p ¼ .004; Contour: z ¼ 3.54, p < .001; Interval: z ¼ 6.06,
p < .001; Rhythm: z ¼ 2.49, p ¼ .006]. Moreover, da

values differed significantly between groups for
the Memory subtests, z ¼ 3.30, p < .001. However,
da values for the Meter subtest, z ¼ 1.99, p ¼ .02, and
Az values for both the Meter, z ¼ 1.12, p ¼ .13, and
Memory, z ¼ 1.80, p ¼ .04, subtests did not differ
between amusic and nonamusic listeners.

In sum, a comparison of amusics with and nonamusic
(normal) listeners revealed differences in response bias,
with amusics responding more conservatively on the
same-different subtests and more liberally on the Mem-
ory test; that is, individuals classified with amusia using
the standard PC cut-off, tended to respond ‘‘same’’ more
often than ‘‘different’’ and ‘‘old’’ more often than ‘‘new.’’
Amusic and nonamusic samples did not differ in terms

TABLE 4. Dependent Measures Derived From Binary Response Proportions (i.e., PC, d0, and c shown with SD) and From Empirical ROC Curves
for Nonamusics and Amusics.

Subtest

Scale Contour Interval Rhythm Meter Memory

Nonamusics (n ¼ 89) PC 0.85 0.82 0.81 0.85 0.85 0.92
(0.08) (0.11) (0.11) (0.10) (0.15) (0.08)

d0 2.30 2.06 1.96 2.31 2.40 2.81
(0.68) (0.84) (0.80) (0.76) (1.17) (0.71)

c �0.06 0.06 0.18 0.06 �0.19 0.03
(0.40) (0.36) (0.38) (0.38) (0.26) (0.27)

s 0.93 1.03 1.01 1.08 0.87 0.73
da 2.06 1.84 1.71 2.04 2.01 2.52
Az 0.92 0.90 0.88 0.92 0.91 0.96

Amusics (n ¼ 4) PC 0.67 0.59 0.58 0.60 0.62 0.73
(0.11) (0.11) (0.17) (0.03) (0.16) (0.06)

d0 1.01 0.70 0.49 0.64 0.65 1.28
(0.70) (0.83) (0.94) (0.29) (0.92) (0.31)

c 0.50 0.31 0.61 0.22 �0.02 �0.23
(0.96) (0.78) (0.37) (0.69) (0.19) (0.37)

s 1.00 0.62 0.79 1.02 0.90 0.66
da 0.88 0.59 0.20 0.59 0.52 1.10
Az 0.73 0.66 0.56 0.66 0.64 0.78

4 To validate our method of testing the nonamusic data against the
mean of the amusic group using a single-sample t-test, we supplemented
the analysis with permutation tests. On each of 10,000 iterations, mean
d0 and c were calculated for random samples of four nonamusic partici-
pants, and a sampling distribution was formed from the difference scores
(amusic vs. non-amusic), from which a test statistic was calculated. The
results using this method were identical and larger in magnitude (d0 : min
z ¼ 18.99; c: min z ¼ 36.06; all ps < .0001).
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of zROC slope, indicating that d0 as a dependent mea-
sure, unlike PC, is not tainted by response bias, and
should therefore be preferred to PC as a measure of
MBEA performance.

COMPARISON OF PC AND D0 FOR DIAGNOSIS OF AMUSIA

As a final means of comparing PC and d0 as measures for
setting a diagnostic criterion, we pooled all participants
from the MBEA and MBEA-C and formed amusic
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FIGURE 6. Empirical normal-model ROC curves for the MBEA-C shown separately for nonamusics (solid lines) and individuals classified as amusic

based on a 2-SD cutoff (dashed lines).
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groups using 2-SD cutoffs based on both dependent
measures separately. Based on PC (cutoff: PC ¼ 65%),5

6 of 155 individuals were categorized as amusic. Based
on d 0 (cutoff: d0 ¼ 1.23), 5 of 155 individuals were
categorized as amusic. Critically, only four of those were
also present in the amusic group formed on the basis of
a PC cutoff. Indeed, two of six individuals (33%) who
would have been diagnosed as amusic based on PC were
not present in the d0-based group, and closer inspection
of the data for these two individuals revealed that they
had large positive response criteria (c ¼ 0.51 and 1.08
averaged over the pitch subtests), but normal perceptual
sensitivity (d0 ¼ 1.65 and 1.72, respectively, for the pitch
subtests).6 Indeed, based on Equation 1, if these indivi-
duals were unbiased in their responding, their pitch-
subtest PC values would have been .80 and .81, respec-
tively, well within the normal performance range. Thus,
this analysis demonstrates the susceptibility of PC to
shifts in the response criterion, c. For our sample, it led
to a 33% (2/6) misclassification rate.

Discussion

Research on normal and disordered music perception
has garnered increased attention in the past decade,
alongside interest in the relationship between music and
language (Patel, 2008). In this regard, research on con-
genital amusia has taken center stage. In the present
study, we evaluated current methods for diagnosing amu-
sia and more generally assessing music perception ability
using the Montreal Battery of Evaluation of Amusia. Spe-
cifically, we conducted a comprehensive signal detection
analysis using the original binary-response version of the
MBEA and a confidence-rating version, the MBEA-C.
The use of confidence ratings afforded a more compre-
hensive signal detection analysis of the MBEA than is
possible with the traditional binary-response format.

An overall comparison of the MBEA-C with the
MBEA revealed slightly better performance on the

MBEA-C than on the MBEA. However, the difference
between the two versions of the test was driven by the
two temporal organization subtests (i.e., Rhythm,
Meter). For the Rhythm subtest, this difference was no
longer significant when we took into account differences
in education for the samples completing the MBEA and
the MBEA-C, however, the difference for the Meter
subtest remained. One potential explanation for better
performance on the temporal organization subtests is
related to the report of Peretz, Brattico, Järvenpää, and
Tervaniemi (2009) regarding a set of amusics who failed
a mistuned pitch detection test when required to make
a binary response, but showed some sensitivity to the
target pitch when allowed to provide a graded (confi-
dence-rating) response. It is possible that confidence-
rating responses allowed for slightly better performance,
because sensitivity can be masked by a binary-response
requirement. However, given that this previous result
was in the pitch domain, it is unclear why in the present
study a performance benefit with confidence ratings
would be only observed for the temporal organization
subtests. It is possible that this finding for the temporal
organization subtests is simply spurious and would fail
to replicate in another study. More work is needed to
assess this.

Three primary questions of interest for the SDT anal-
yses were: 1) whether PC (the standard performance
index for the MBEA) is biased and thus perhaps not
the best measure for assessing and comparing individ-
ual performance, 2) whether amusics and nonamusics
differ in their response bias, as measured by c, and 3)
whether d0 (an alternative signal detection performance
index) provides a useful alternative to PC.

With respect to the first question, we found that PC is
indeed a biased measure of MBEA performance. We
used confidence-rating responses to calculate Az,
a bias-free nonparametric performance measure that
is directly comparable to PC. Comparison of PC with
Az using a permutation-based approach revealed that
PC consistently underestimates performance for all of
the same-different subtests. Our SDT analyses revealed
that this was due to lower PC values associated with
shifts in the location of the response criterion, c, rather
than due to a true decrease in sensitivity. The theoretical
relationship between the response criterion, c, and PC is
shown in Figure 3; for any fixed sensitivity, non-zero
response bias causes decreases in PC that are not attrib-
utable to decreased sensitivity. Because of this depen-
dency, we suggest the use of d0 as an alternative measure
of MBEA performance. Toward this end, we showed
that the equal-variance assumption of SDT holds for all
of the MBEA subtests, which means that d0 does not

5 We note that our PC-based cutoff was somewhat lower than cutoffs
from other normative samples using the MBEA. For example, the cutoff
for amusic diagnosis emerging from the initial study of Peretz et al. (2003)
was 77%, whereas ours was 65%, which is a much lower and necessarily
more conservative criterion. We do not currently have an explanation for
the overall difference in performance between our sample and the original
Peretz norms. However, we note that several other studies have reported
cutoff scores in between these values (Cuddy et al., 2005: 72%, Peretz
et al., 2008: 74% for young adults, 70% for older adults), suggesting that
some variability in cutoff scores across samples should be expected.

6 One additional individual was classified as amusic using only a d0-
based cutoff, but was considered nonamusic based on PC. We note that
this individual fell on the border of diagnosis with PC as well (composite
PC ¼ 66%, relative to a 65% cutoff).
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suffer from the same contamination from response bias
that PC does. One advantage of d0 is that it can be
calculated from binary response proportions obtained
using the standard binary-response version of the
MBEA.

With respect to the second question, we found that
participants classified as amusic using the PC-based
criterion were much more conservative in their
responding (they had reliably more extreme values of c)
than nonamusic participants. Several other studies are
worth noting in this regard. First, Peretz et al. (2009)
found that the relatively poor performance of amusics
relative to nonamusics on a task that required detec-
tion of an out-of-key note was in part due to frequent
‘congruous’ responses to incongruous melodies con-
taining a mistuned note. Second, Williamson et al.
(2010) reported larger proportions of misses than false
alarms on a pitch memory task requiring same-
different responses (i.e., more ‘‘same’’ than ‘‘different’’
responses) for amusics relative to nonamusics. Finally,
Omigie and Stewart (2011) found differences between
response biases for amusic versus nonamusic partici-
pants. However, response bias in this study was
defined somewhat differently than the standard SDT
definition in order to assess implicit versus explicit
learning (Kunimoto, Miller, & Pashler, 2001; Tunney
& Shanks, 2003). As far as we are aware, however, the
current study is the first to explicitly report systematic
differences in response bias between amusic and non-
amusic participants using estimates of the response cri-
terion, c, on the MBEA.

There are at least two possible interpretations of the
observed response bias differences between amusic and
nonamusic individuals. On the one hand, it could be the
case that individuals with a musical impairment are
more strongly biased than nonamusic individuals. On
this account, shifts in the response criterion are a symp-
tom. However, on the other hand, because PC is tainted
by response bias and a PC-based criterion is typically
used to create samples of amusic and nonamusic parti-
cipants in many research studies on congenital amusia,
simply having a large response bias could cause an indi-
vidual with normal sensitivity to be diagnosed as amu-
sic. Indeed, these possibilities are not mutually
exclusive. We have shown that 33% of our diagnosed
amusics showed perceptual sensitivity in the normal
range (based on d0) but had large response biases that
led to amusia diagnosis when using a PC-based cutoff.
These individuals constitute a clear case of the latter
situation, where increased response bias causes an amu-
sia diagnosis. However, the rest our amusic sample
showed high response bias concomitant with low

sensitivity, suggesting that for these individuals, extreme
response bias may be a symptom of a true musical dis-
order. Using PC as a dependent measure does not allow
separating these two possibilities. Thus, the solution
offered in this article is to abandon the use of a PC-
based criterion for amusia classification in favor of an
unbiased performance metric. In this regard, with respect
to the third primary question, we’ve shown that for the
MBEA, d0 is an unbiased alternative.

For cases where having a conservative response crite-
rion is a symptom of amusia rather than contributing to
potential misdiagnosis, one obvious question is why
these amusic individuals would demonstrate such a con-
servative response strategy. One possibility is motiva-
tional in origin. Previous work on regulatory focus
theory has shown that when an individual performs
a diagnostic test with a preconceived notion about how
she should perform, one potential consequence is adop-
tion of a more conservative response criterion (Crowe &
Higgins, 1997). In the domain of the MBEA, previous
work has shown that nonmusicians (who were critically
told that they were likely to perform poorly relative to
musicians on the task) were more conservative than
musicians (who were told they were likely to perform
well; McAuley, Henry, & Tuft, 2011). On this basis, our
suggestion is that individuals who expect to perform
poorly on a task that they know will be diagnostic
(i.e., the MBEA) may adopt a more conservative
response criterion in an effort to hedge their losses. A
test of this hypothesis is currently underway.

It is interesting here to consider a possible connection
between (1) potential misclassification of a musical
impairment based on extreme response biases and
(2) perception-action mismatch observed for some
amusic individuals. Consider, for example, that
although some amusics perform very poorly when
asked to identify the direction of a pitch change (by
responding ‘lower’ or ‘higher’), they are capable of cor-
rectly singing the direction of the change (Loui,
Guenther, Mathys, & Schlaug, 2008). One possibility
that deserves some consideration based on the present
study is that the quantification of perceptual deficits
may be based, at least in part, on response biases,
whereas production tasks by nature require responses
that are bias-free. This suggestion is supported by
a recent study indicating that the degree of a percep-
tion-action mismatch in amusics depends on the nature
of the perception task (Williamson, Liu, Peryer, Grier-
son, & Stewart, 2012). Perception thresholds were found
to be much higher than production thresholds when
amusics were asked to identify the direction of a pitch
change (as in Loui et al., 2008); however, when
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perception abilities were evaluated using an AXB task
intended to reduce response bias, no such dissociation
was found. In general, future work should carefully
consider the role of response bias in conclusions regard-
ing the nature of amusia.

Finally, it is worth noting that although in the current
study we were able to examine only a small number of
diagnosed amusics (n ¼ 4 on the MBEA-C), the con-
clusions we have drawn regarding the biases inherent in
PC as a measure of performance are based on a signal
detection analysis of our full sample of 93 participants.
Thus, our primary conclusion (PC is a biased measure
of performance on the MBEA and should be avoided)
could not be an artifact of the small number of amusic
participants. Nonetheless, an important future goal of
amusia research should be to better explicate the nature
of response biases in amusics using larger sample sizes.

In sum, we prescribe use of the signal detection
measure, d0, in evaluation of MBEA performance and
diagnosis of amusia. The current study shows that PC
is a biased performance measure, due to its variation
with response criterion location. Moreover, amusic
individuals (diagnosed based on PC) were more biased
than nonamusic listeners. However, we argue that this
is, in some cases, not a hallmark of amusia per se, but
instead can be a consequence of using an inappropriate
dependent measure that has the potential to misdiag-
nose amusia when individuals use relatively extreme

response criteria but have sensitivity in the normal
range. The use of a bias-free performance metric for
amusia diagnosis is necessary to avoid this problem.
The SDT analyses we performed based on confidence
rating data revealed satisfaction of the equal-variances
assumption of SDT for all subtests of the MBEA, thus
supporting the use of d0 as a preferred performance
metric and diagnostic criterion. From this perspective,
the use of bias-free criteria tightens the criteria for
amusic classification by restricting diagnoses to sub-
groups of ‘‘poor performers’’ who show true sensitivity
deficits.
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Appendix

function [Az da] ¼ roc_analysis(yesratings,noratings)
% ------------------------------------------------- %

% Molly J. Henry & J. Devin McAuley
% henry@cbs.mpg.de, mcauley@msu.edu
%

% This function calculates ROC curves and nonparametric ROC-based dependent
% measures s (zROC slope), da, and Az, from confidence-rating data for a
% yes-no signal detection design.
%

% See Henry & McAuley, ‘‘Failure to apply signal detection theory to the
% Montreal Battery of Evaluation of Amusia may misdiagnose amusia’’ for a
% full description of the dependent measures.
%

% Inputs:
% yesratings: A vector containing raw confidence rating counts for yes
% trials
% noratings: A vector containing raw confidence rating counts for no trials
% totalyes: The total number of presented trials from the yes category
% totalno: The total number of presented trials from the no category
%

% Note: Vectors of ratings must contain a minimum of 4 elements.
%

% Outputs:
% Az: A nonparametric, bias-free analogue to proportion correct (PC).
% da: A nonparametric, bias-free analogue to d0.
%

% ------------------------------------------------- %

% Check inputs
if length(yesratings) <¼ 3 || length(noratings) <¼ 3; disp(’Confidence ratings must be more than
three values!’); return; end;
yesratings ¼ yesratings(:); noratings ¼ noratings(:);

% Calculate cumulative response proportions
pyes ¼ yesratings ./ sum(yesratings);
pno ¼ noratings ./ sum(noratings);
cpyes ¼ pyes; cpno ¼ pno;
for ii ¼ 1:length(pyes)-1
cpyes(iiþ1,1) ¼ cpyes(iiþ1,1) þ cpyes(ii,1);
cpno(iiþ1,1) ¼ cpno(iiþ1,1) þ cpno(ii,1);

end
% Calculate zROCs and slopes
cpyes ¼ cpyes(2:end-1,1); cpno ¼ cpno(2:end-1,1);

% First, correct for 0s and 1s
cpyes(find(cpyes ¼¼ 0)) ¼ 1 / 2*(sum(yesratings));
cpyes(find(cpyes ¼¼ 1)) ¼ 1 - (1 / 2*(sum(yesratings)));
cpno(find(cpno ¼¼ 0)) ¼ 1 / 2*(sum(noratings));
cpno(find(cpno ¼¼ 1)) ¼ 1 - (1 / 2*(sum(noratings)));

zyes ¼ norminv(cpyes); zno ¼ norminv(cpno);
C ¼ polyfit(zno,zyes,1);
s ¼ C(1,1); int ¼ C(1,2);

% Calculate dependent measures
da ¼ ((2/(1 þ s^2))^0.5)*int;
Az ¼ normcdf((da/sqrt(2)));

end
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